Lic. em Ciências da Computação e Lic. em Matemática 2023/2024 Exame de Álgebra Universal e Categorias 15 Junho 2024

Nome e No ·			

Este teste é constituído por 3 grupos. O grupo I é para responder neste enunciado. Os grupos II e III devem ser respondidos na folha de teste providenciada. Duração: $2\ \mathrm{horas}$

Em todo este teste, $\mathcal N$ denota a álgebra $(\mathbb N_0,+,0)$ de tipo 2,0; M_3 denota o conjunto $\{0,a,b,c,1\}$ e O_6 denota o conjunto $\{0,a,b,c,d,1\}$; e $\mathcal M_3=(M_3;\wedge,\vee)$ e $\mathcal O_6=(O_6;\wedge',\vee')$ são os reticulados dados respectivamente pelos dois diagramas seguintes.

Ι

- 1. Diga se cada uma das seguintes 6 afirmação é verdadeira ou falsa. Cada resposta correcta vale 1 valor, cada resposta errada vale -0.25 valores, a ausência de resposta vale 0 valores.
 - a) Existe um homomorfismo $\alpha: \mathcal{O}_6 \to \mathcal{M}_3$ tal que $ker(\alpha) = \nabla_{O_6}$. \square \square
 - b) $Sg^{\mathcal{O}_6}(\{a,c\}) = O_6.$
 - c) \mathcal{O}_6 é um reticulado distributivo. \square \square
 - d) Existem reticulados não triviais \mathcal{R}_1 e \mathcal{R}_2 tais que o reticulado $\mathcal{R}_1 \times \mathcal{R}_2$ é isomorfo a \mathcal{O}_6 .
 - e) No monóide \mathcal{N} , visto como categoria, 0 é epimorfismo. \square
 - f) Em \mathcal{M}_3 , $\Theta(a,a) = \Delta_{M_3}$.

Para cada uma das seguintes afirmações, escreva <u>duas linhas</u> para justificar a veracidade ou falsidade das mesmas. (2 valores cada).

- 2. Se (P,\leq) é um reticulado, $Q\subseteq P$ e \leq' é a ordem induzida em Q, então (Q,\leq') é um reticulado.
- 3. Existe um mergulho $\alpha: \mathcal{M}_3 \to \mathcal{O}_6$.
- 4. A álgebra ${\mathcal N}$ tem um par de congruências-factor.
- 5. Na categoria Set, existe um monomorfismo que é um epimorfismo.

TTT

Demonstre as seguintes afirmações (2 valores cada).

- 6. Todo o reticulado finito é algébrico.
- 7. Sejam $\mathcal{A} = (A; F)$ e $\mathcal{B} = (B; G)$ álgebras do mesmo tipo, S um subuniverso de \mathcal{B} e $h: A \to B$ um homomorfismo de \mathcal{A} em \mathcal{B} . O conjunto $h^{\leftarrow}(S) = \{a \in A | h(a) \in S\}$ é um sub-universo de \mathcal{A} .
- 8. Se $\mathcal C$ é uma categoria onde todo o morfismo é invertível à esquerda, então em $\mathcal C$ todo o morfismo é invertível à direita.