Álgebra Universal e Categorias

1. (a) Considere a álgebra $\mathcal{A}=(A;+^{\mathcal{A}})$ de tipo (2), onde $A=\{0,1,2,3,4,5\}$ e $+^{\mathcal{A}}$ é a operação binária definida por

 $a +^{\mathcal{A}} b = \text{resto de } a + b \text{ na divisão inteira por } 6$, para quaisquer $a, b \in A$.

Diga, justificando, se é verdadeira ou falsa a seguinte afirmação: Para quaisquer subonjuntos S_1 e S_2 de A, se S_1 e S_2 são subuniversos de A, então $S_1 \cup S_2$ é um subuniverso de A.

Um conjunto S diz-se um subuniverso da álgebra $\mathcal{A}=(A;+^{\mathcal{A}})$ se

- $S \subseteq A$;
- o conjunto S é fechado para a operação de A, i.e., para quaisquer $x, y \in A$,

$$x, y \in S \Rightarrow x +^{\mathcal{A}} y \in S.$$

O conjunto $S_1 = \{0, 2, 4\}$ é um subuniverso de A. De facto, S_1 é um subconjunto de A e é fechado para a operação $+^A$, uma vez que

- $0 + {}^{\mathcal{A}} 0 = 2 + {}^{\mathcal{A}} 4 = 0 \in S_1$, $0 + {}^{\mathcal{A}} 2 = 4 + {}^{\mathcal{A}} 4 = 2 \in S_1$, $0 + {}^{\mathcal{A}} 4 = 2 + {}^{\mathcal{A}} 2 = 4 \in S_1$;
- a operação $+^{\mathcal{A}}$ é comutativa.

O conjunto $S_2 = \{0,3\}$ também é um subuniverso de A. De facto, S_2 é um subconjunto de A e é fechado para a operação $+^A$, pois

-
$$0 +^{\mathcal{A}} 0 = 3 +^{\mathcal{A}} 3 = 0 \in S_2$$
, $0 +^{\mathcal{A}} 3 = 3 = 3 +^{\mathcal{A}} 0 \in S_2$.

O conjunto $S_1 \cup S_2 = \{0,2,3,4\}$ não é um subuniverso de \mathcal{A} , uma vez que não é fechado para a operação $+^{\mathcal{A}}$: $2,3 \in S_1 \cup S_2$, mas $2+^{\mathcal{A}}3=1 \not\in S_1 \cup S_2$.

Logo a afirmação indicada é falsa, pois S_1 e S_2 são subuniversos de \mathcal{A} , mas $S_1 \cup S_2$ não é subuniverso de \mathcal{A} .

(b) Seja $\mathcal{B}=(B;F)$ uma álgebra. Mostre que se S_1 e S_2 são subuniversos de \mathcal{B} , então $S_1\cap S_2$ é um subuniverso de \mathcal{B} .

Seja $\mathcal{B}=(B;F)$ uma álgebra. Um subconjunto S de B diz-se um subuniverso de \mathcal{B} se as seguintes condições são satisfeitas

- $S \subseteq B$;
- para qualquer símbolo de operação n-ário f e para quaisquer $b_1, \ldots, b_n \in B$,

$$b_1, \ldots, b_n \in S \Rightarrow f^{\mathcal{B}}(b_1, \ldots b_n) \in S.$$

Sejam S_1 e S_2 subuniversos de \mathcal{B} . Então:

- (1) $S_1 \cap S_2 \subseteq B$ (pois $S_1 \subseteq B$ e $S_2 \subseteq B$, uma vez que são subuniversos de \mathcal{B});
- (2) para qualquer símbolo de operação n-ário f e para quaisquer $b_1, \ldots, b_n \in S_1 \cap S_2$,

$$\begin{array}{ll} b_1,\dots,b_n\in S_1\cap S_2 &\Rightarrow& b_1,\dots,b_n\in S_1 \text{ e } b_1,\dots,b_n\in S_2\\ &\Rightarrow& f^{\mathcal{B}}(b_1,\dots,b_n)\in S_1 \text{ e } f^{\mathcal{B}}(b_1,\dots,b_n)\in S_2\\ &&\quad (\text{ pois } S_1 \text{ e } S_2 \text{ são fechados para a operação } f^{\mathcal{B}})\\ &\Rightarrow& f^{\mathcal{B}}(b_1,\dots,b_n)\in S_1\cap S_2. \end{array}$$

Uma vez que $S_1 \cap S_2$ é um subconjunto de B e é fechado para as operações de \mathcal{B} , então $S_1 \cap S_2$ é um subuniverso de \mathcal{B} .

2. Sejam $\mathcal{A}=(A;F)$ e $\mathcal{B}=(B;G)$ álgebras do mesmo tipo. Seja $\alpha:A\times B\to A$ a aplicação definida por $\alpha((a,b))=a$, para todo $(a,b)\in A\times B$.

(a) Mostre que α é um homomorfismo sobrejetivo de $\mathcal{A} \times \mathcal{B}$ em \mathcal{A} . Justifique que $(\mathcal{A} \times \mathcal{B})/\ker \alpha \cong A$.

Uma vez que α é uma aplicação de $A \times B$ em A, para provar que α é um homomorfismo de $\mathcal{A} \times \mathcal{B}$ em \mathcal{A} , resta mostrar que α é compatível com f, para todo o símbolo de operação n-ário f. De facto, dado um símbolo de operação n-ário f e dados $(a_1,b_1),\ldots,(a_n,b_n)\in A\times B$, tem-se

$$\alpha(f^{\mathcal{A}\times\mathcal{B}}((a_{1},b_{1}),\ldots,(a_{n},b_{n}))) = \alpha(f^{\mathcal{A}}(a_{1},\ldots,a_{n}),f^{\mathcal{B}}(b_{1},\ldots,b_{n})) \quad (1)$$

$$= f^{\mathcal{A}}(a_{1},\ldots,a_{n}) \quad (2)$$

$$= f^{\mathcal{A}}(\alpha(a_{1},b_{1}),\ldots(a_{n},b_{n})). \quad (2)$$

(1) Por definição de $f^{A \times B}$. (2) Por definição de α .

Claramente, a aplicação α é sobrejetiva. Uma vez que $B \neq \emptyset$, existe $b \in B$. Logo, para todo $a \in A$, existe $(a,b) \in A \times B$ tal que $\alpha(a,b) = a$.

Atendendo a que $\alpha: \mathcal{A} \times \mathcal{B} \to \mathcal{A}$ é um epimorfismo (pois α é um homomorfismo sobrejetivo), pelo Teorema Fundamental do Homomorfismo tem-se $(\mathcal{A} \times \mathcal{B})/\ker \alpha \cong A$.

(b) Mostre que α é um monomorfismo se e só se $\mathcal B$ é uma álgebra trivial.

A aplicação α é um monomorfismo se α é um homomorfismo injetivo. A álgebra \mathcal{B} é trivial se |B|=1.

- (\Rightarrow) Admitamos que a álgebra $\mathcal B$ não é trivial. Então existem $b_1,b_2\in B$ tais que $b_1\neq b_2$. Uma vez que $A\neq\emptyset$, existe $a\in A$. Logo existem $(a,b_1),(a,b_2)\in A\times B$ tais que $(a,b_1)\neq (a,b_2)$ e $\alpha(a,b_1)=a=\alpha(a,b_2)$. Por conseguinte, a aplicação α não é um homomorfismo injetivo.
- (\Leftarrow) Suponhamos que \mathcal{B} é uma álgebra trivial; seja b o único elemento de B. Então, para quaisquer $(a_1,b),(a_2,b)\in A\times B$,

$$\alpha(a_1, b) = \alpha(a_2, b) \Rightarrow a_1 = a_2$$

 $\Rightarrow (a_1, b) = (a_2, b).$

Logo a aplicação α é injetiva. Uma vez que da alínea anterior sabe-se que α é um homomorfismo, então α é um monomorfismo.

3. Seja $\mathcal{A}=(A;f^{\mathcal{A}},g^{\mathcal{A}})$ a álgebra de tipo (1,1) tal que $A=\{a,b,c,d\}$ e $f^{\mathcal{A}}$ e $g^{\mathcal{A}}$ são as operações definidas por

(a) Considere as congruências $\theta_1 = \triangle_A \cup \{(a,c),(c,a),(b,d),(d,b)\}$ e $\theta_2 = \theta(c,d)$. Mostre que (θ_1,θ_2) é um par de congruências fator.

O par (θ_1, θ_2) é um par de congruências fator se $\theta_1 \cap \theta_2 = \triangle_A$, $\theta_1 \vee \theta_2 = \nabla_A$ e $\theta_1 \circ \theta_2 = \theta_2 \circ \theta_1$.

No sentido de mostrar que (θ_1, θ_2) é um par de congruências fator, comecemos por determinar θ_2 .

Dada uma álgebra $\mathcal{B}=(B;F)$ de tipo (O,τ) , diz-se que uma relação binária em B é uma congruência em \mathcal{B} se θ é uma relação de equivalência em B que satisfaz a propriedade de substituição, i.e., se θ é uma relação de equivalência em B tal que, para qualquer símbolo de operação n-ário $h\in O$ e para quaisquer $a_1,\ldots,a_n,\ b_1,\ldots b_n\in B$,

$$(a_1,b_1),\ldots,(a_n,b_n)\in\theta\Rightarrow(h^{\mathcal{B}}(a_1,\ldots,a_n),h^{\mathcal{B}}(b_1,\ldots,b_n))\in\theta.$$

Dado $X \subseteq B^2$, representa-se por $\theta(X)$ a menor congruência em \mathcal{B} que contém X.

Uma vez que $\theta_2 = \theta(c,d)$ é a menor congruência em \mathcal{A} que contém $\{(c,d)\}$ segue que

- $(c,d) \in \theta_2$;
- $(d,c) \in \theta_2$ (pois θ_2 é simétrica);
- $\triangle_A \subseteq \theta_2$ (pois θ_2 é reflexiva);
- $(f^{\mathcal{A}}(c), f^{\mathcal{A}}(d)) = (a, a), (f^{\mathcal{A}}(d), f^{\mathcal{A}}(c)) = (a, a) \in \theta_2$ (pela propriedade de substituição);
- $(g^{\mathcal{A}}(c), g^{\mathcal{A}}(d)) = (a, b), (g^{\mathcal{A}}(d), g^{\mathcal{A}}(c)) = (b, a) \in \theta_2$ (pela propriedade de substituição);
- $(f^{\mathcal{A}}(a), f^{\mathcal{A}}(b)) = (a, a), (f^{\mathcal{A}}(b), f^{\mathcal{A}}(a)) = (a, a) \in \theta_2$ (pela propriedade de substituição);
- $(g^{\mathcal{A}}(a), g^{\mathcal{A}}(b)) = (a, b), (g^{\mathcal{A}}(b), g^{\mathcal{A}}(a)) = (b, a) \in \theta_2$ (pela propriedade de substituição).

Logo $\triangle_A \cup \{(a,b),(b,a),(c,d),(d,c)\} \subseteq \theta_2$.

A relação $\theta = \Delta_A \cup \{(a,b),(b,a),(c,d),(d,c)\}$ é uma congruência em \mathcal{A} (pois é uma relação de equivalência que satisfaz a propriedade de substituição) e contém $\{(a,b)\}$. Mas $\theta_2 = \theta(a,b)$ é a menor congruência em \mathcal{A} que contém $\{(a,b)\}$. Logo $\theta_2 = \theta(a,b) \subseteq \theta$.

Assim, $\theta_2 = \theta = \triangle_A \cup \{(a, b), (b, a), (c, d), (d, c)\}.$

O par (θ_1, θ_2) é um par de congruências fator, pois

- $\theta_1 \cap \theta_2 = \triangle_A$;
- $\theta_1 \vee \theta_2 = \theta_1 \cup \theta_2 \cup \{(a,d), (d,a), (b,c), (c,b)\} = \nabla_A;$
- $\theta_1 \circ \theta_2 = \theta_1 \cup \theta_2 \cup \{(a,d), (d,a), (b,c), (c,b)\} = \theta_2 \circ \theta_1.$

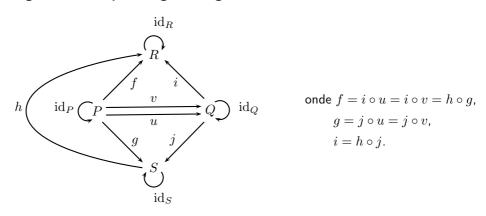
(b) Diga, justificando, se existem álgebras não triviais \mathcal{B} e \mathcal{C} tais que $\mathcal{A} = \mathcal{B} \times \mathcal{C}$.

Uma álgebra \mathcal{A} é diretamente indecomponivel se sempre que $A\cong\mathcal{B}\times\mathcal{C}$ (onde \mathcal{B} e \mathcal{C} são álgebras do mesmo tipo da álgebra \mathcal{A}), então \mathcal{B} é a álgebra trivial ou \mathcal{C} é a álgebra trivial. As álgebras diretamente indecomponíveis podem ser caracterizadas da seguinte forma: uma álgebra \mathcal{A} é diretamente indecomponível se e só se as únicas congruências fator de \mathcal{A} são as congruências ∇_A e \triangle_A . Da alínea anterior sabe-se que que θ_1 e θ_2 são congruências fator de \mathcal{A} . Uma vez que $\theta_1, \theta_2 \not\in \{\Delta_A, \nabla_A\}$, então Δ_A e ∇_A não são as únicas congruências fator de \mathcal{A} . Logo a álgebra \mathcal{A} não é diretamente indecomponível e, portanto, existem álgebras não triviais \mathcal{B} e \mathcal{C} tais que $\mathcal{A} = \mathcal{B} \times \mathcal{C}$.

(c) A álgebra \mathcal{A} é sudiretamente irredutível? Justifique a sua resposta.

Toda a álgebra sudiretamente irredutível é diretamente indecomponível. Uma vez que $\mathcal A$ não é diretamente indecomponível, então $\mathcal A$ não é subdiretamente irredutível.

4. Seja C a categoria definida pelo diagrama seguinte



Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:

(a) Todo o morfismo de C que é um bimorfismo também é um isomorfismo.

A afirmação é falsa.

Um morfismo $p:X\to Y$ diz-se um bimorfismo se é simultaneamente um epimorfismo e um monomorfismo. Um morfismo $p:X\to Y$ diz-se um isomorfismo se existe um morfismo $p':Y\to X$ tal que $p\circ p'=\mathrm{id}_Y$ e $p'\circ p=\mathrm{id}_X$.

O C-morfismo $f: P \to R$ é um monomorfismo, pois, para quaisquer $i_1, i_2: X \to P$,

$$f \circ i_1 = f \circ i_2 \Rightarrow i_1 = i_2 = \mathrm{id}_P$$
.

O C-morfismo $f:P\to R$ também é um epimorfismo, uma vez que, para quaisquer $j_1,j_2:P\to X$,

$$j_1 \circ f = j_2 \circ f \Rightarrow j_1 = j_2 = \mathrm{id}_R$$
.

Logo f é um bimorfismo. No entanto, f não é um isomorfismo, uma vez que não existe qualquer morfismo $f': R \to P$ tal que $f \circ f' = \mathrm{id}_R$ e $f' \circ f = \mathrm{id}_P$.

(b) O par (R, i) é um coigualizador de u e v.

A afirmação é falsa.

O par (R,i) é um coignalizador de u e v se as seguintes condições são satisfeitas:

- (1) $i \circ u = i \circ v$;
- (2) para qualquer C-morfismo $r:Q\to X$ tal que $r\circ u=r\circ v$, existe um, e um só, C-morfismo $s:R\to X$ tal que $s\circ i=r$.

Ora, atendendo a que $j:Q\to S$ é um C-morfismo tal que $j\circ u=j\circ v$ e não existe qualquer C-morfismo $s:R\to S$ tal que $s\circ i=j$, concluímos que a condição (2) não é satisfeita e, portanto, o par (R,i) não é um coigualizador de u e v.

5. Sejam C uma categoria e $f:A\to B$ e $g:B\to C$ morfismos em C. Mostre que se $g\circ f$ é invertível à esquerda e f é invertível à direita, então f é um bimorfismo.

Sejam $f:A\to B$ e $g:B\to C$ C-morfismos em ${\bf C}$ tais que $g\circ f$ é invertível à esquerda e f é invertível à direita. Pretende-se mostrar que f é um bimorfismo, isto é, pretende-se provar que f é um monomorfismo e um epimorfismo.

O morfismo f é um monomorfismo se, para quaisquer morfismos $i_1, i_2: D \to A$,

$$f \circ i_1 = f \circ i_2 \Rightarrow i_1 = i_2$$
.

O morfismo f é um epimorfismo se, para quaisquer morfismos $j_1, j_2 : B \to E$,

$$j_1 \circ f = j_2 \circ f \Rightarrow j_1 = j_2$$
.

Um vez que f é invertível à direita, existe um morfismo $f': B \to A$ tal que $f \circ f' = \mathrm{id}_B$. Logo, para quaisquer morfismos $j_1, j_2: B \to E$

$$j_{1} \circ f = j_{2} \circ f \quad \Rightarrow \quad (j_{1} \circ f) \circ f' = (j_{2} \circ f) \circ f'$$

$$\Rightarrow \quad j_{1} \circ (f \circ f') = j_{2} \circ (f \circ f')$$

$$\Rightarrow \quad j_{1} \circ \mathrm{id}_{B} = j_{2} \circ \mathrm{id}_{B}$$

$$\Rightarrow \quad j_{1} = j_{2}.$$

Logo f é um epimorfismo.

Atendendo a que $g \circ f$ é invertível à esquerda, existe um morfismo $h: C \to A$ tal que $h \circ (g \circ f) = \mathrm{id}_A$. Então, para quaisquer morfismos $i_1, i_2: D \to A$,

$$f \circ i_1 = f \circ i_2 \quad \Rightarrow \quad (h \circ g) \circ (f \circ i_1) = (h \circ g) \circ (f \circ i_2)$$
$$\Rightarrow \quad (h \circ g \circ f) \circ i_1 = (h \circ g \circ f) \circ i_2$$
$$\Rightarrow \quad \mathrm{id}_A \circ i_1 = \mathrm{id}_A \circ i_2$$
$$\Rightarrow \quad i_1 = i_2.$$

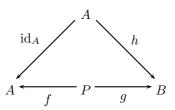
Logo f é um monomorfismo.

Desta forma, provámos que f é um monomorfismo e um epimorfismo e, portanto, f é um bimorfismo.

6. Sejam C uma categoria e A, B e P objetos de C tais que $\hom(A,B) \neq \emptyset$ e $f:P \to A$ e $g:P \to B$ são morfismos de C. Mostre que se (P;(f,g)) é um produto de A e B, então f é invertível à direita.

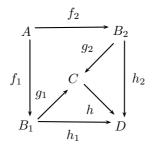
Seja (P;(f,g)) um produto de A e B. Pretende-se mostrar que f é invertível à direita, isto é, pretende-se provar que existe um morfismo $f':B\to A$ tal que $f\circ f'=\mathrm{id}_A$.

Uma vez que $\hom(A,B) \neq \emptyset$, existe um \mathbf{C} -morfismo $h:A \to B$. Atendendo a que \mathbf{C} é uma categoria e A é um objeto de \mathbf{C} , $\mathrm{id}_A:A \to A$ é um morfismo de \mathbf{C} . Assim, tem-se o seguinte diagrama em \mathbf{C}



Uma vez que (P,(f,g)) é um produto de A e B, então existe um, e um só, ${\bf C}$ -morfismo $u:A\to P$ tal que $f\circ u=\mathrm{id}_A$ e $g\circ u=h$. Dado que existe o morfismo $u:A\to P$ tal que $f\circ u=\mathrm{id}_A$, conclui-se que f é invertível à dieita.

7. Numa categoria C, considere o seguinte diagrama



Mostre que se o diagrama anterior é comutativo, h é um monomorfismo e $(A,(f_1,f_2))$ é um produto fibrado de (g_1,g_2) , então $(A,(f_1,f_2))$ é um produto fibrado de (h_1,h_2) .

Admitamos que $(A, (f_1, f_2))$ é um produto fibrado de (g_1, g_2) . Então:

- (1) $g_1 \circ f_1 = g_2 \circ f_2$;
- (2) para qualquer objeto X e para quaisquer morfismos $u_1: X \to B_1$ e $u_2: X \to B_2$, se $g_1 \circ u_1 = g_2 \circ u_2$, então existe um, e um só, morfismo $u: X \to A$ tal que $f_1 \circ u = u_1$ e $f_2 \circ u = u_2$.

Pretende-se mostrar que $(A, (f_1, f_2))$ é um produto fibrado de (h_1, h_2) . Isto é, pretende-se provar que

- (3) $h_1 \circ f_1 = h_2 \circ f_2$;
- (4) para qualquer objeto Y e para quaisquer morfismos $v_1:Y\to B_1$ e $v_2:Y\to B_2$, se $h_1\circ v_1=h_2\circ v_2$, então existe um, e um só, morfismo $v:Y\to A$ tal que $f_1\circ v=v_1$ e $f_2\circ v=v_2$.
- De (1) e (2) é imediata a prova de (3) e (4). De facto:
- (3) Uma vez que $h_1 \circ f_1$ e $h_2 \circ f_2$ são morfismos com o mesmo domínio e com o mesmo codomínio e o diagrama anterior é comutativo, é imediato que $h_1 \circ f_1 = h_2 \circ f_2$.
- (4) Sejam Y um objeto de \mathbf{C} e $v_1:Y\to B_1$, $v_2:Y\to B_2$ morfismos de \mathbf{C} tais que $h_1\circ v_1=h_2\circ v_2$. Então, atendendo a que $h_1=h\circ g_1$ e $h_2=h\circ g_2$ (pois o diagrama é comutativo), tem-se

$$h \circ g_1 \circ v_1 = h \circ g_2 \circ v_2.$$

Logo, como h é monomorfismo, vem que

$$g_1 \circ v_1 = g_2 \circ v_2$$
.

Assim, atendendo a (2), conclui-se que existe um, e um só, morfismo $v:Y\to A$ tal que $f_1\circ v=v_1$ e $f_2\circ v=v_2$.

8. Sejam C e D categorias. Diz-se que um funtor $F: C \to D$ reflete objetos iniciais se, para todo $I \in \mathrm{Obj}(\mathbf{C})$,

F(I) é objeto inicial de $\mathbf{D} \Rightarrow I$ é objeto inicial de \mathbf{C} .

Mostre que se F é um funtor fiel e pleno, então F reflete objetos iniciais.

Sejam F um funtor fiel e pleno e I um objeto de \mathbf{C} tal que F(I) é um objeto inicial de \mathbf{D} . Pretende-se mostrar que I é um objeto inicial de \mathbf{D} , isto é, pretende-se mostrar que, para qualquer objeto X de \mathbf{C} , existe um, e um só, \mathbf{C} -morfismo de I em X.

Seja X um objeto de ${\bf C}$. Logo F(X) é um objeto de ${\bf D}$. Uma vez que F(I) é um objeto inicial de ${\bf D}$, existe um, e um só, ${\bf D}$ -morfismo $g:F(I)\to F(X)$. Então, atendendo a que F é pleno, existe um ${\bf C}$ -morfismo $f:I\to X$ tal que F(f)=g. Assim, para qualquer ${\bf C}$ -objeto X, existe um ${\bf C}$ -morfismo de I em X. Resta mostrar que existe, no máximo, um ${\bf C}$ -morfismo de I em X. De facto, se assumirmos que $f_1:I\to X$ e $f_2:I\to X$ são ${\bf C}$ -morfismos, tem-se que $F(f_1):F(I)\to F(X)$ e $F(f_2):F(I)\to F(X)$ são ${\bf D}$ -morfismos. Logo, como F(I) é um objeto inicial de ${\bf D}$, vem que F(f)=F(g) (pois existe um único ${\bf D}$ -morfismo de F(I) em F(X)). Desta última igualdade segue que $f_1=f_2$, uma vez que F é fiel. Desta forma, provámos que, para qualquer ${\bf C}$ -objeto X, existe um, e um só, ${\bf C}$ -morfismo de I em X, isto é, mostrámos que I é um objeto inicial de ${\bf C}$.