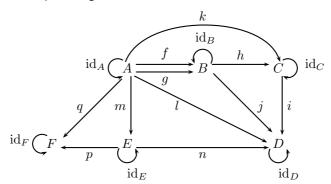
Álgebra Universal e Categorias

_____ 2° teste (31 de maio de 2016) ______ duração: 2 horas ______

1. Seja C a categoria definida pelo diagrama



 $\text{ onde } j=i\circ h, \ k=h\circ f=h\circ g \ \ , \quad l=j\circ f=j\circ g=i\circ k=n\circ m \ \text{e} \quad q=p\circ m.$

- (a) Construa a categoria dos objetos sobre F.
- (b) Dê exemplo, caso existam, de um C-morfismo s e de uma subcategoria C' de C tais que s não seja monomorfismo em C e seja monomorfismo em C'.
- (c) Diga, justificando, se (C,h) é um co-igualizador de f e g.
- 2. Sejam C uma categoria e $f: A \to B$ e $g: B \to C$ morfismos em C. Mostre que:
 - (a) Se f e g são epimorfismos, então $g \circ f$ é um epimorfismo.
 - (b) Se f é um epimorfismo e invertível à esquerda, então f é um isomorfismo.
- 3. Seja ${\bf C}$ uma categoria com objeto inicial I e com objeto terminal T. Mostre que se $f:T\to I$ é um morfismo em ${\bf C}$, então f é um isomorfismo. Conclua que I e T são objetos zero.
- 4. Sejam $f,g:A\to B$ e $i:I\to A$ morfismos numa categoria ${\bf C}$. Mostre que se (I,(i,i)) é um produto fibrado de (f,g), então (I,i) é um igualizador de f e g .
- 5. Sejam ${\bf C}$ uma categoria, A_1 , A_2 e P objetos de ${\bf C}$ e $p_1:P\to A_1$ e $p_2:P\to A_2$ morfismos em ${\bf C}$ tais que $(P,(p_1,p_2))$ é um produto de A_1 e A_2 . Mostre que se $f:Q\to P$ é um isomorfismo em ${\bf C}$, então $(Q,(p_1\circ f,p_2\circ f))$ é um produto de A_1 e A_2 .
- 6. Sejam ${\bf C}$ e ${\bf D}$ categorias e T um objeto terminal da categoria ${\bf D}$. Seja F a correspondência que a cada objeto A de ${\bf C}$ associa o objeto (A,T) e que a cada ${\bf C}$ -morfismo $f:A\to B$ associa o par (f,id_T) , onde id_T é o ${\bf D}$ -morfismo identidade associado a T.
 - (a) Mostre que F é um funtor da categoria C na categoria $C \times D$.
 - (b) Diga, justificando, se F é um funtor: i. fiel. ii. pleno.