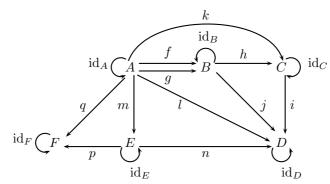
Álgebra Universal e Categorias

_____ 2° teste (31 de maio de 2016) ______ duração: 2 horas ______

1. Seja C a categoria definida pelo diagrama



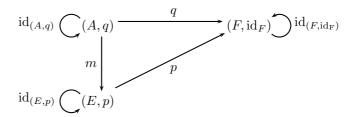
onde $j = i \circ h$, $k = h \circ f = h \circ g$, $l = j \circ f = j \circ g = i \circ k = n \circ m$ **e** $q = p \circ m$.

(a) Construa a categoria dos objetos sobre F.

A categoria dos objetos sobre F, representada por \mathbb{C}/\mathbb{F} , é a categoria tal que:

- os objetos de \mathbb{C}/\mathbb{F} são todos os pares (X,s), onde A é um objeto de \mathbb{C} e $s:X\to F$ é um morfismo de \mathbb{C} :
- dados objetos (X,s) e (Y,t) de \mathbf{C}/\mathbf{F} , um \mathbf{C}/\mathbf{F} -morfismo de (X,s) em (Y,t) é um \mathbf{C} -morfismo $v:X\to Y$ tal que $t\circ v=s$;
- para cada objeto (X,s) de ${f C}/{f F}$, o morfismo identidade ${\rm id}_{(X,s)}$ é o ${f C}$ -morfismo ${\rm id}_X:X\to X$;
- dados morfismos $w:(X,s) \to (Y,t)$ e $z:(Y,t) \to (Z,v)$ a sua composição $z \circ w:(X,s) \to (Z,v)$ é o ${\bf C}$ -morfismo $z \circ w:X \to Z$.

Assim, a categoria \mathbf{C}/\mathbf{F} é a categoria representada pelo diagrama



(b) Dê exemplo, caso existam, de um C-morfismo s e de uma subcategoria C' de C tais que s não seja monomorfismo em C e seja monomorfismo em C'.

Seja ${f C}'$ a categoria representada pelo diagrama

$$id_B \xrightarrow{h} C \xrightarrow{h} id_C$$

Claramente, C' é uma subcategoria de C, pois

- $Obj(\mathbf{C}') \subseteq Obj(\mathbf{C})$,
- $Mor(\mathbf{C}') \subseteq Mor(\mathbf{C})$,
- para cada $X \in \mathrm{Obj}(\mathbf{C}')$, o morfismo id_X em \mathbf{C}' é o morfismo id_X em \mathbf{C} ;
- a composição de morfismos em \mathbf{C}' é a induzida pela composição de morfismos em $\mathbf{C}.$

Considerando o morfismo h, verifica-se que h é um monomorfismo em \mathbf{C}' , mas não é um monomorfismo em \mathbf{C} (pois $h \circ f = h \circ g$ e $f \neq g$).

(c) Diga, justificando, se (C,h) é um co-igualizador de f e g.

O par (C, h) é um co-igualizador de f e g, pois:

- $h \circ f = h \circ g$;
- se $r: B \to X$ é um C-morfismo tal que $r \circ f = r \circ g$, então existe um, e um só, C-morfismo $u: C \to X$ tal que $u \circ h = r$. De facto, se r é um morfismo nas condições anateriores, temos dois casos a considerar: r = h ou r = j. Se r = h, existe um, e um só morfismo $u: C \to C$ tal que $h = u \circ h$; tal morfismo é o morfismo id_C . Se r = j, existe um, e um só, morfismo $u: C \to D$ tal que $u \circ h = j$, tal morfismo é o morfismo $i: C \to D$.
- 2. Sejam C uma categoria e $f: A \to B$ e $g: B \to C$ morfismos em C. Mostre que:
 - (a) Se f e g são epimorfismos, então $g \circ f$ é um epimorfismo.

Sejam f e g epimorfismos da categoria ${\bf C}$. Então $g\circ f$ é um epimorfismo, isto é, para quaisquer morfismos $i,j:C\to D$,

$$i \circ (g \circ f) = j \circ (g \circ f) \Rightarrow i = j.$$

De facto, como f e g são epimorfismos, tem-se

$$\begin{array}{lll} i\circ (g\circ f)=j\circ (g\circ f) & \Rightarrow & (i\circ g)\circ f=(j\circ g)\circ f\\ & \Rightarrow & i\circ g=j\circ g & \text{(pois } f\text{ \'e um epimorfismo)}\\ & \Rightarrow & i=j & \text{(pois } g\text{ \'e um epimorfismo)}. \end{array}$$

(b) Se f é um epimorfismo e invertível à esquerda, então f é um isomorfismo.

Admitamos que f é um epimorfismo e invertível à esquerda. Uma vez que f é invertível à esquerda, existe $f': B \to A$ tal que $f' \circ f = \mathrm{id}_A$. Então $f \circ (f' \circ f) = f$, donde $(f \circ f') \circ f = \mathrm{id}_B \circ f$. Por conseguinte, como f é um epimorfismo, tem-se $f \circ f' = \mathrm{id}_B$. Logo f é invertível à direita. Uma vez que que f é invertível à direita e à esquerda, concluímos que f é um isomorfismo.

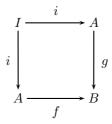
3. Seja C uma categoria com objeto inicial I e com objeto terminal T e seja $f: T \to I$ um morfismo de C. Mostre que f é um isomorfismo. Conclua que I e T são objetos zero.

Admitamos que I é um objeto inicial, T é um objeto terminal e que $f:T\to I$ é um ${\bf C}$ -morfismo. Uma vez que T é um objeto terminal, existe um ${\bf C}$ -morfismo $u:I\to T$. Logo $u\circ f:T\to T$ é um ${\bf C}$ -morfismo e tem-se $u\circ f=\operatorname{id}_T$. De facto, como $u\circ f:T\to T$ e $\operatorname{id}_T:T\to T$ são morfismos de ${\bf C}$ e existe um único ${\bf C}$ -morfismo de T em T (uma vez que T é um objeto terminal), tem-se $u\circ f=\operatorname{id}_T$. De modo análogo conclui-se que $f\circ u=\operatorname{id}_I$, pois $f\circ u:I\to I$ e $\operatorname{id}_I:I\to I$ são morfismos em ${\bf C}$ e existe um único morfismo de I em I (uma vez que I é um objeto inicial). Assim, f é invertível à direita e à esquerda e, portanto, f é um isomorfismo.

Um objeto que seja isomorfo a um objeto inicial (respetivamente, terminal) também é um objeto inicial (respetivamente, terminal). Logo, como I e T são isomorfos, concluímos que I e T são objetos simultaneamente iniciais e terminais, isto é, são objetos zero.

4. Sejam $f,g:A\to B$ e $i:I\to A$ morfismos numa categoria C. Mostre que se (I,(i,i)) é um produto fibrado de (f,g), então (I,i) é um igualizador de f e g.

Admitamos que (I,(i,i)) é um produto fibrado de (f,g), i.e., admitamos que o diagrama



é um quadrado cartesiano. Então:

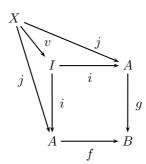
- (1) $f \circ i = g \circ i$;
- (2) para quaisquer C-morfismos $f': X \to A$ e $g': X \to B$ tais que $f \circ f' = g \circ g'$, existe um, e um só, C-morfismo $u: X \to I$ tal que $i \circ u = f'$ e $i \circ u = g'$.

Pretendemos provar que (I,i) é um igualizador de f e g, isto é, temos de provar que:

- (i) $f \circ i = g \circ i$;
- (ii) para todo o C-morfismo $j:X\to A$ tal que $f\circ j=g\circ j$, existe um, e um só, C-morfismo $v:X\to I$ tal que $i\circ v=j$.

Considerando (1) e (2) a prova de (i) e (ii) é imediata. De facto,

- (i) De (1) é imediato que $f \circ i = g \circ i$.
- (ii) se $j: X \to A$ é um C-morfismo tal que $f \circ j = g \circ j$, então de (2) (considerando f' = j e g' = j) resulta que existe um e, um só morfismo $v: X \to I$ tal que $i \circ v = j$.



5. Sejam C uma categoria, A_1 , A_2 e P objetos de C e $p_1: P \to A_1$ e $p_2: P \to A_2$ morfismos de C tais que $(P, (p_1, p_2))$ é um produto de A_1 e A_2 . Mostre que se $f: Q \to P$ é um isomorfismo em C, então $(Q, (p_1 \circ f, p_2 \circ f))$ é um produto de A_1 e A_2 .

Sejam $(P,(p_1,p_2))$ um produto de A_1 e A_2 e $f:Q\to P$ um isomorfismo.

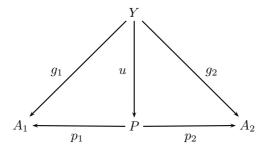
Uma vez que $(P,(p_1,p_2))$ é um produto de A_1 e A_2 , então, para quaisquer morfismos $f_1:X\to A_1$ e $f_2:X\to A_2$, existe um, e um só morfismo, $u:X\to P$ tal que $p_1\circ u=f_1$ e $p_2\circ u=f_2$.

Atendendo a que f é um isomorfismo, sabe-se que existe um morfismo $f^{-1}: P \to Q$ tal que $f \circ f^{-1} = \mathrm{id}_P$ e $f^{-1} \circ f = \mathrm{id}_Q$.

Pretendemos mostrar que $(Q,(p_1\circ f,p_2\circ f))$ é um produto de A_1 e A_2 , i.e., temos de mostrar que:

- (1) $p_1 \circ f$ é um morfismo de Q em A_1 e $p_2 \circ f$ é um morfismo de Q em A_2 ;
- (2) para quaisquer C-morfismos $g_1: Y \to A_1$ e $g_2: Y \to A_2$, existe um, e um só, morfismo $v: Y \to Q$ tal que $(p_1 \circ f) \circ v = g_1$ e $(p_2 \circ f) \circ v = g_2$.

A prova de (1) é imediata, atendendo à definição de composição de morfismos. A prova de (2) também é simples. De facto, se $g_1:Y\to A_1$ e $g_2:Y\to A_2$ são C-morfismos, então, uma vez que $(P,(p_1,p_2))$ é um produto de A_1 e A_2 , existe um, e um só morfismo $u:Y\to P$ tal que $p_1\circ u=g_1$ e $p_2\circ u=g_2$.



Assim, $v = f^{-1} \circ u$ é um C-morfismo e tem-se

$$(p_1 \circ f) \circ v = (p_1 \circ f) \circ (f^{-1} \circ u) = p_1 \circ u = g_1,$$

 $(p_2 \circ f) \circ v = (p_2 \circ f) \circ (f^{-1} \circ u) = p_2 \circ u = g_2.$

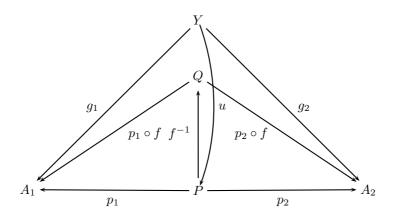
Além disso, $v = f^{-1} \circ u$ é o único C-morfismo de Y em Q tal que $(p_1 \circ f) \circ v = g_1$ e $(p_2 \circ f) \circ v = g_2$. Com efeito, se $v': Y \to Q$ é um C-morfismo tal que

$$(p_1 \circ f) \circ v' = g_1 \ e \ (p_2 \circ f) \circ v' = g_2,$$

tem-se

$$p_1 \circ (f \circ v') = g_1 \in p_2 \circ (f \circ v') = g_2$$

e atendendo à unicidade de u segue que $f \circ v' = u$. Logo $v' = f^{-1} \circ u = v$.



- 6. Sejam C e D categorias e T um objeto terminal da categoria D. Seja F a correspondência que a cada objeto A de C associa o objeto (A,T) e que a cada C-morfismo $f:A\to B$ associa o par (f,id_T) , onde id_T é o D-morfismo identidade associado a T.
 - (a) Mostre que F é um funtor da categoria C na categoria $C \times D$.

Da definição de F segue que:

- (i) Para cada objeto X de \mathbf{C} , F(X)=(X,T) é um objeto de $\mathbf{C}\times\mathbf{D}$ (pois X é um objeto de \mathbf{C} e T é um objeto de \mathbf{D});
- (ii) Para cada C-morfismo $f: X \to Y$, $F(f) = (f, \mathrm{id}_T)$ é um morfismo de $\mathbf{C} \times \mathbf{D}$ (uma vez que f é um C-morfismo e id_T é um D-morfismo).
- (iii) Para cada objeto X de \mathbf{C} ,

$$F(\mathrm{id}_X) = (\mathrm{id}_X, \mathrm{id}_T) = \mathrm{id}_{(X,T)} = \mathrm{id}_{F(X)}.$$

(iv) Para quaisquer C-morfismos $f: X \to Y$ e $g: Y \to X$,

$$F(g \circ f) = (g \circ f, \mathrm{id}_T) = (g \circ f, \mathrm{id}_T \circ \mathrm{id}_T) = (g, \mathrm{id}_T) \circ (f, \mathrm{id}_T) = F(g) \circ F(f).$$

De (i), (ii), (iii) e (iv) conclui-se que F é um funtor de C em $C \times D$.

- (b) Diga, justificando, se F é um funtor:
 - i. fiel.

O funtor F é fiel se, para quaisquer C-morfismos $f, g: X \to Y$,

$$F(f) = F(q) \Rightarrow f = q.$$

Atendendo a que, para quaisquer C-morfismos $f, g: X \to Y$,

$$F(f) = F(g) \Rightarrow (f, \mathrm{id}_T) = (g, \mathrm{id}_T)$$

 $\Rightarrow f = g,$

concluímos que F é fiel.

ii. pleno.

O funtor F é pleno pois, para quaisquer objetos X e Y de ${\bf C}$ e para qualquer ${\bf C} \times {\bf D}$ -morfismo $(g,h):F(X) \to F(Y)$, existe um ${\bf C}$ -morfismo $f:X \to Y$ tal que F(f)=(g,h).

De facto, se X e Y são objetos de ${\bf C}$ e $(g,h):F(X)\to F(Y)$ é um morfismo de ${\bf C}\times {\bf D}$, então g é um ${\bf C}$ -morfismo de X em Y, h é um ${\bf D}$ -morfismo de T en T e, uma vez que T é um objeto terminal, tem-se $h={\rm id}_T$. Logo, atendendo a que $g:X\to Y$ é um ${\bf C}$ -morfismo tal que

$$F(q) = (q, id_T) = (q, h),$$

conclui-se que F é pleno.