Autómatos e Linguagens Formais

	Teste — 26 de maio de 2023 —	duração: 115 minutos
Nome:		Número:

Cada uma das questões do **Grupo I** deve ser respondida no espaço disponibilizado a seguir à questão, <u>sem apresentação de justificações</u>. As respostas às questões do **Grupo II** devem ser apropriadamente justificadas e respondidas na "Folha de Teste".

Grupo I

- 1. Considere o alfabeto $A = \{0, 1\}$ e as linguagens $L_1 = \{\epsilon, 0\}$ e $L_2 = \{00, 11\}$.
 - (a) Determine $(L_1L_2)^I$.

Resposta:

(b) Determine $L_2^0 \cup L_2^1 \cup L_2^2$.

Resposta:

(c) Indique uma expressão regular r sobre A tal que $\mathcal{L}(r) = L_2^* L_1$.

Resposta:

- 2. Considere o alfabeto $A = \{a, b\}$ e a expressão regular $r_0 = (a^* + (bb)^*)^*$.
 - (a) Determine $L_0 = \{u \in A^* : |u| \le 3 \land u \in \mathcal{L}(r_0)\}.$

Resposta:

- (b) Indique se cada uma das duas seguintes afirmações é ou não verdadeira.
 - i) $(a+b^*b)^* \le r_0$. Resposta:
 - ii) $r_0 \leq (a^*(bb)^*)^*$. Resposta:
- (c) Desenhe (graficamente) um autómato finito que reconheça $\mathcal{L}(r_0)$. Podem ser utilizadas transições- ϵ .

Resposta:

3. Considere o autómato $\mathcal{A}=(\{0,1\},\{a,b\},\delta,0,\{1\}),$ cuja função transição δ é dada pela tabela:

$$\begin{array}{c|cccc}
\delta & 0 & 1 \\
\hline
a & \{1\} & \emptyset \\
b & \emptyset & \{0,1\}
\end{array}$$

(a) Determine o conjunto das palavras de comprimento 3 que sejam etiqueta de algum caminho com origem 1 e destino 1.

Resposta:

- (b) Indique um sistema de equações lineares à direita associado a \mathcal{A} . Resposta:
- (c) Indique uma expressão regular r sobre A tal que $\mathcal{L}(r) = L(\mathcal{A})$. Resposta:
- (d) Desenhe (graficamente) um autómato finito determinista que reconheça $L(\mathcal{A})$. Resposta:
- 4. Considere o alfabeto $A=\{a,b\}$ e a gramática independente de contexto $G=(\{S\},A,S,P)$, onde as produções de P são: $S \rightarrow \epsilon \mid aSbS \mid bSaS \ .$
 - (a) Determine $L_0 = \{u \in A^* : |u| \le 3 \land u \in L(G)\}$. Resposta:
 - (b) Indique duas derivações de abab a partir de S que não sejam essencialmente iguais. Resposta:
 - (c) (i) Indique um autómato de pilha E com 1 estado, que use o critério da pilha vazia para reconhecer palavras, tal que L(E) = L(G) (as transições de E podem ser descritas graficamente) e (ii) indique uma computação em E que mostre que ab é reconhecida por E.

 Resposta:

Grupo II

Considere o alfabeto $A = \{a, b\}$ e a linguagem $L_0 = \{u \in A^* : |u|_a = |u|_b\}.$

- 1. Mostre que $L_0^* = L_0$.
- 2. Mostre que a linguagem L_0 não é regular.
- 3. Seja L a linguagem sobre A definida indutivamente pelas regras seguintes:

1.
$$\epsilon \in L$$
 2. $x \in L \land y \in L \Rightarrow axby \in L$ 3. $x \in L \land y \in L \Rightarrow bxay \in L$

Mostre, por indução, que:

- (a) para todo $u \in A^*$, se $u \in L_0$, então $u \in L$.
- (b) para todo $u \in L$, $u \in L(G)$, onde G é a gramática da questão 4 do Grupo I.

Cotações			_				_
Cotações	3	3,5	4,25	4,25	1,25	1,25	2,5