AUTÓMATOS E LINGUAGENS FORMAIS

Lic. Ciências da Computação Lic. Matemática

Exercícios - Linguagens

1. Defina indutivamente:

- (a) o conjunto das palavras sobre o alfabeto $A = \{0, 1\}$ que começam por 0;
- (b) o conjunto das palavras sobre o alfabeto $A = \{a, b\}$ que têm um número de ocorrências de a's igual ao número de ocorrências de b's;
- (c) o conjunto $\{a^i b^j \mid 0 < i < j\}$ onde $a \in b$ são letras;
- (d) o conjunto $\{a^icb^j\mid i=j+1, j\in\mathbb{N}_0\}$, sendo $A=\{a,b,c\}$ o alfabeto;
- (e) o conjunto das palavras w sobre $\{a, b, c\}$ tais que $w = w^I$;
- (f) o conjunto T das palavras sobre $\{0,1\}$ que têm a palavra 00 como fator;
- (g) o conjunto U das palavras sobre $\{0,1\}$ que não têm a palavra 001 como fator.
- 2. Sejam A um alfabeto e $u, v \in A^*$. Mostre que:
 - (a) |uv| = |u| + |v| (sugestão: por indução sobre |v|);
 - (b) $|u^n| = n |u|$ para qualquer $n \in \mathbb{N}_0$;
 - (c) $|u^I| = |u|$.
- 3. Sejam $A = \{a, b, c\}$ um conjunto com três elementos e $L \subseteq A^*$ uma linguagem definida indutivamente por:
 - (i) $c \in L$;
 - (ii) se $w \in L$ então $abwb \in L$;
 - (iii) se $w \in L$ então $cw \in L$ e $wc \in L$.
 - (a) Mostre que $2|w|_a = |w|_b$ para todo o $w \in L$.
 - (b) Verifique que nem todas as palavras que têm a propriedade referida em 3a são elementos de L.
- 4. Sejam $k, n \in \mathbb{N}$ e A um alfabeto. Considere a relação binária pref definida por: para $u, v \in A^*$,

 $u \ pref \ v \Leftrightarrow u \ \text{\'e} \ \text{um} \ \text{prefixo} \ \text{de} \ v.$

- (a) Mostre que a relação pref é uma relação de ordem parcial em A^* .
- (b) Sejam $u, v, w \in A^*$. Mostre que:
 - (b1) se $u \ pref \ v$, então $|u| \le |v|$;
 - (b2) se u pref v e w pref v, então u pref w ou w pref u.

5. Sejam $A = \{a, b\}, L = \{u \in A^* \mid |u| \text{ \'e par}\} \text{ e } K \text{ a linguagem definida indutivamente pelas regras seguintes:}$

- (i) $\varepsilon \in K$;
- (ii) Se $w \in K$ e $a_1, a_2 \in A$, então $a_1wa_2 \in K$.
- (a) Mostre que $aabb \in K$ e $baaaba \in K$.
- (b) Enuncie o Princípio de Indução Estrutural para K.
- (c) Mostre que $K \subseteq L$.
- (d) Prove que K = L.
- 6. Em cada uma das alíneas seguintes define-se indutivamente um conjunto L de palavras sobre $A = \{a, b\}$. Em cada caso dê uma definição explícita para L.
 - (a) (i) $a \in L$; (ii) se $x \in L$, então $xa, xb \in L$.
 - (b) (i) $a \in L$; (ii) se $x \in L$, então bx, $xb \in L$.
 - (c) (i) $a \in L$; (ii) se $x \in L$, então $ax, xb \in L$.
 - (d) (i) $a \in L$; (ii) se $x \in L$, então $xb, xa, bx \in L$.
 - (e) (i) $a \in L$; (ii) se $x \in L$, então $xb, ax, bx \in L$.
 - (f) (i) $a \in L$; (ii) se $x \in L$, então $xb, xba \in L$.
 - (g) (i) $\varepsilon \in L$, $b \in L$, $bb \in L$; (ii) se $x \in L$, então $xa, xab, xabb \in L$.
 - (h) (i) $\varepsilon \in L$; (ii) se $x \in L$, então, caso x = yb, para $y \in A^*$, $xa \in L$, senão $xb \in L$.
- 7. Sejam $k, n \in \mathbb{N}$ e A um alfabeto com k letras.
 - (a) Determine o número de palavras sobre A de comprimento 4.
 - (b) Determine o número de palavras sobre A de comprimento não superior a 4.
 - (c) Indique, mais geralmente, o número de palavras sobre A de comprimento não superior a n.
- 8. Sejam A um alfabeto, $a, b \in A$ e $u \in A^*$. Mostre que se au = ub então a = b e $u \in \{a\}^*$.
- 9. Seja $X = \{aa, bb\} \in Y = \{\varepsilon, b, ab\}.$
 - (a) Indique as palavras do conjunto XY.
 - (b) Indique as palavras do conjunto Y^* de comprimento não superior a 3.
 - (c) Quantas palavras de comprimento 6 existem em X^* .
- 10. Sejam $A = \{a, b\}, X = \{a, ab\} \in Y = \{\varepsilon, bab, ab\}.$
 - (a) Dê exemplos de palavras dos conjuntos Y^+ e Y^* e constate que $Y^+ = Y^*$.
 - (b) Determine $X^0 \in X^3$.
 - (c) Calcule X^+ e X^* .
 - (d) Determine $L = abb(Y^2 \cup X)$.
 - (e) Determine $(ab)^{-1}L$ e $(ab)^{-1}Y^2$.

- 11. Sejam $A = \{a, b\}$ e $L = A^*abaA^*$.
 - (a) Determine L^2 e L^* .
 - (b) Calcule $a^{-1}L$, $b^{-1}L$, $(aa)^{-1}L$, $(ba)^{-1}L$, $(ab)^{-1}L$ e $(abab)^{-1}L$.
- 12. Sejam L, L_1 e L_2 linguagens sobre um alfabeto A. Mostre que:
 - (a) $L(L_1 \cup L_2) = LL_1 \cup LL_2$.
 - (b) $L(L_1 \cap L_2) \neq LL_1 \cap LL_2$.
- 13. Seja A um alfabeto e sejam $L, L_1, L_2 \subseteq A^*$. Mostre que:
 - (a) se $L_1 \subseteq L_2$, então $LL_1 \subseteq LL_2$ e $L_1L \subseteq L_2L$.
 - (b) pode ter-se $LL_1 \subseteq LL_2$, $L_1L \subseteq L_2L$ e $L_1 \not\subseteq L_2$.
- 14. Sejam A um alfabeto, L uma linguagem sobre A e $u, v, w \in A^*$. Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:
 - (a) $uv = uw \Rightarrow v = w$; (b) $vu = wu \Rightarrow v = w$.
 - (c) $\varepsilon L = L\varepsilon = L;$ (d) $\varnothing L = \varnothing;$
 - (e) $L\varnothing = L$; (f) $L = L^1$;
 - (g) $L^+ = L^*L$; (h) $\varnothing^+ = \varnothing$;
 - (i) $\varnothing^* = \{\varepsilon\};$ (j) $\varepsilon \in L^+, \forall L;$
 - (l) $\mathcal{E} = \{\varepsilon\};$ (J) $\varepsilon \in L^+, \forall L;$ (k) $L^+ \cup \{\varepsilon\} = L^*;$ (l) $L^+ \neq L^*, \forall L;$
 - (m) $L^+ \subseteq L^*$; (n) $L^* \subseteq L^+$.
- 15. Seja L uma linguagem sobre o alfabeto $A = \{a, b\}$ tal que $\varepsilon \notin L$. Para cada uma das afirmações seguintes, diga se a afirmação é verdadeira ou falsa.
 - (a) $L \setminus aA^* = L \cap bA^*$.
 - (b) $L^*A^* \subset (LA)^*$.
- 16. Sejam $A = \{a, b\}$ e L uma linguagem sobre A definida indutivamente por:
 - (i) $a \in L$;
 - (ii) se $x \in L$, então $xb, xba \in L$.

De entre as seguintes afirmações, selecione as afirmações verdadeiras.

- a) $a^{-1}L^* = A^*$; b) $L^+ = A^*$; c) $L^* = A^*$; d) $b^{-1}L^* = L^*$.
- 17. Sejam $A = \{a, b\}$ e L uma linguagem sobre A definida indutivamente por:
 - (i) $\varepsilon \in L$;
 - (ii) se $x \in L$, então xba, $xaa \in L$.

De entre as seguintes afirmações, selecione a afirmação verdadeira.

a) $(ba)^{-1}L \neq L$; b) $a^{-1}L = aL$; c) $L \neq L^*$; d) $(bb)^{-1}L^* \neq \emptyset$.

Exercícios - Linguagens regulares

- 18. Descreva a linguagem representada por cada uma das seguintes expressões regulares sobre o alfabeto $\{0,1\}$.
 - (a) $0(0+1)^*1$;
 - (b) $(\varepsilon + 0)^*$;
 - (c) 0*1*0*;
 - (d) $(0+1)^40(0+1)^*$.
- 19. Dê exemplos de palavras de comprimento mínimo sobre o alfabeto $\{a, b, c\}$, que não pertencem à linguagem representada por cada uma das seguintes expressões regulares.
 - (a) $\varepsilon + a^*(a+b+c)^*(b+c)$;
 - (b) $a^* + b^* + c^*$;
 - (c) $a^*(ba)^*b^*$;
 - (d) $a^*(b^* + c^*)a^*$.
- 20. Considere o alfabeto $D = \{0, 1, \dots, 9\}$ e considere a linguagem N formada pelos números naturais. Mostre que é um conjunto regular.
- 21. Para cada linguagem descrita no exercício 6, indique uma expressão regular correspondente.
- 22. Sejam $A = \{a, b\}$ um alfabeto e $K \subseteq A^*$ uma linguagem definida por:
 - (i) $\varepsilon \in K$;
 - (ii) se $u \in K$ então abu, $ub^2 \in K$.
 - (a) Verifique se ab^2a é fator de alguma palavra de K.
 - (b) Escreva uma expressão regular $r \in ER(A)$ tal que a linguagem correspondente verifique $\mathcal{L}(r) = K$.
- 23. Prove que a expressão regular $(ab + b)^+$ representa a linguagem das palavras sobre A cuja última letra é b e aa não é fator.
- 24. Indique uma expressão regular representando o conjunto das palavras sobre o alfabeto $\{a,b\}$:
 - (a) que têm pelo menos duas letras consecutivas iguais;
 - (b) de comprimento par;
 - (c) que não têm aba como fator;
 - (d) que têm pelo menos duas ocorrências do fator aba;
 - (e) que têm uma e uma só ocorrência do fator ab.
- 25. Indique uma expressão regular representando o conjunto das palavras sobre o alfabeto $\{a,b,c\}$:
 - (a) que admitem como fator as palavras abc e cbb;

- (b) que não têm aba como fator;
- (c) cujas palavras inversas são elementos de $(ac)^*(a^2 + ba)^*c$.
- 26. Sejam A um alfabeto, $L \subseteq A^*$ e $L^I = \{x^I \mid x \in L\}$.
 - (a) Defina uma função que a cada expressão regular $e \in ER(A)$ faça corresponder uma expressão $e' \in ER(A)$, tal que $\mathcal{L}(e') = \mathcal{L}(e)^I$.
 - (b) Conclua que se L é uma linguagem regular, então L^I também é regular.
- 27. Seja $A = \{a, b, c\}$. Preencha os espaços entre as seguintes expressões regulares sobre A com um dos símbolos $=, \le$ ou \le :
 - (a) $a^* + b^* \underline{\hspace{1cm}} (a+b)^*;$
 - (b) $a(a+b)^*$ _____ $a(a^*+b)^*$;
 - (c) $aa^*a_{\underline{}}a^*aaa^*;$
 - (d) $a(a+b)^*a_{\underline{}}(a+b)^*aa(a+b)^*;$
 - (e) $a(b+c)^*$ $(ab+ac)^*$;
 - (f) $(ab + ac)^* \underline{\hspace{1cm}} a^*(b+c)^*;$
 - (g) $c^*(ab+a)^*$ ____(a+ba+c)* $(b+\varepsilon)$;
 - (h) $(b^*ab^*ab^*)^*c(b^*ab^*ab^*)^*$ _____ $b^*(ab^*a)^*b^*cb^*(ab^*a)^*b^*$.
- 28. Sendo $A = \{a, b\}$ e $L = (aA^* \cap A^*b) \setminus (A^*aaA^* \cup A^*bbA^*)$, mostre que $L = \mathcal{L}((ab)^+)$.
- 29. Seja A um alfabeto.
 - (a) Prove que \leq é uma relação de ordem parcial.
 - (b) Mostre que, para quaisquer $r, r_1, r_2, s, s_1, s_2 \in ER(A)$, se tem:
 - i. $r < r^*$;
 - ii. $r \leq r + s$;
 - iii. $r \leq s \Rightarrow r^* \leq s^*$;
 - iv. se $r_1 \le s_1$ e $r_2 \le s_2$, então $r_1 + r_2 \le s_1 + s_2$;
 - v. se $r_1 \le s_1$ e $r_2 \le s_2$, então $r_1 r_2 \le s_1 s_2$;
 - vi. $(r^+s)^* < (r^*s^*)^*$;
 - vii. se $r_1 \leq s$ e $r_2 \leq s$, então $r_1 + r_2 \leq s$;
 - viii. se $r_1 \leq s^*$ e $r_2 \leq s^*$, então $r_1 r_2 \leq s^*$.
 - (c) Verifique se, para quaisquer $r, s \in ER(A)$, $(r^+s)^* = (r^*s^*)^*$.
- 30. Seja A um alfabeto e sejam $r, s \in ER(A)$. Mostre que:
 - (a) $r^* = (r^*)^*$;
 - (b) $r^* = r^*r^*$;
 - (c) $r(sr)^* = (rs)^*r$;
 - (d) $(r+s)^* = (r^*+s^*)^* = (r^*s)^*r^* = r^*(sr^*)^*$;
 - (e) $(r^*s)^* = \varepsilon + (r+s)^*s$;
 - (f) $(rs^*)^* = \varepsilon + r(r+s)^*$;
 - (g) $(r^* + s^*)^* = (r^*s^*)^*$.

31. Seja $A = \{a, b, c\}$. Verifique se são válidas as seguintes igualdades entre expressões regulares:

- (a) $a(b^* + a^*b) = a(b^* + a^+b),$
- (b) $((ab)^*a)^* = (ab+a)^+ab + \varepsilon$,
- (c) $(ac(abc)^* + b)^* = ((a(cab)^*c)^* + b^*)^*$.
- 32. Seja $A = \{a, b, c\}$. Considere a expressão regular $r = ((ab)^*(a+c))^* \in ER(A)$.

Diga qual das seguintes igualdades entre expressões regulares sobre o alfabeto A é verdadeira.

- (a) $r = (ab + c)^*(a + c) + \varepsilon$.
- (b) $r = (ab + a + c)^*(a + c) + \varepsilon$.
- (c) $r = ab(ab + a + c)^* + \varepsilon$.
- (d) $r = (ab + a + c)^*$.
- 33. Sejam $A = \{a, b, c\}$ e L a linguagem sobre A constituída por todas as palavras w tais que acc e cca são fatores de w. Seja r uma expressão regular tal que a linguagem associada a r é L(r) = L. Qual das seguintes expressões é uma solução para r?
 - (a) $r = (a+b+c)^*acc(a+b+c)^*cca(a+b+c)^* + (a+b+c)^*cca(a+b+c)^*acc(a+b+c)^*$.
 - (b) $r = (a+b+c)^*acc(a+b+c)^*cca(a+b+c)^* + (a+b+c)^*acca(a+b+c)^* + (a+b+c)^*cca(a+b+c)^* + (a+b+c)^*ccac(a+b+c)^*.$
 - (c) r = acc(a+b+c)*cca + (a+b+c)*accca(a+b+c)* + (a+b+c)*acca(a+b+c)* + cca(a+b+c)*acc+ (a+b+c)*ccac(a+b+c)*.
 - (d) $r = (a+b+c)^*acc(a+b+c)^*cca(a+b+c)^* + (a+b+c)^*accca(a+b+c)^* + (a+b+c)^*cca(a+b+c)^* + (a+b+c)^* + (a+b+c$
- 34. Sejam A um alfabeto e $r, s, t \in ER(A)$ tais que $s \le t$ e $\varepsilon \le r$. Verifique que r^*t é solução da equação X = rX + s.
- 35. Seja $A = \{a, b\}$. Indique as soluções mínimas das seguintes equações lineares à direita sobre expressões regulares:
 - (a) $X = (b^* + a)X + a + (ab)^*$;
 - (b) $X = (ab)^*X + a$;
 - (c) $X = babX + \emptyset$;
 - (d) $X = \emptyset X + a^*$;
 - (e) $X = \varepsilon X + a^*$;
 - (f) $X = (ab^*)^*aX + ab$.
- 36. Em cada caso, indique a solução mínima do sistema equações lineares à direita sobre expressões regulares:
 - (a) $\begin{cases} X_1 = bX_1 + a^*X_2 + a \\ X_2 = a^*X_1 + abX_2 + \varepsilon \end{cases}$;
 - (b) $\begin{cases} X_1 = a^* X_1 + a X_2 + \varepsilon \\ X_2 = a X_1 + a a X_2 + \varepsilon \end{cases}$

37. Seja (t_1, t_2) uma solução do seguinte sistema de equações lineares à direita sobre expressões regulares:

$$\begin{cases} X_1 = bX_1 + aX_2 + \varepsilon \\ X_2 = aX_1 + bX_2 \end{cases}.$$

De entre as quatro opções abaixo, diga qual é uma afirmação verdadeira:

- (a) O sistema tem mais do que uma solução e um resultado possível para t_2 é $t_2 = b^*a(b+ab^*a)^*$.
- (b) A solução do sistema é única e $t_1 = (b + ba)^*(b + \varepsilon)^*$.
- (c) A solução do sistema é $((b+ab^*a)^*, b^*a(b+ab^*a)^*)$.
- (d) Uma solução do sistema é $((b + ab^*a)^*, b^*a)$.
- 38. Seja (t_1, t_2, t_3) uma solução do seguinte sistema de equações lineares à direita sobre expressões regulares:

$$\begin{cases} X_1 &= bX_2 \\ X_2 &= aX_3 \\ X_3 &= aX_1 + bX_2 + b \end{cases}.$$

De entre as quatro opções abaixo, diga qual é uma afirmação verdadeira:

- (a) Existem várias soluções e na solução mínima o resultado para t_1 é $t_1=\varepsilon$.
- (b) Um expressão possível para $t_1 \notin t_1 = ba(aba + ba)^*b$.
- (c) A solução do sistema é única e $t_1 = ba(a+b)^+bab + bab$.
- (d) A solução do sistema é única e $t_2 = ((ab)^+a)^*(ba)^+b$.
- 39. Considere a equação linear à esquerda sobre expressões regulares X = Xr + s em que $r, s \in \mathcal{R}eg(A)$. Verifique sr^* é solução da equação.