	Lógica CC		
	— 1º Teste A 6 de novembro de 2018 — duração: 2 horas —		
nome: _	número		
	Grupo I		
(V) ou -0,25 v	upo é constituído por 6 questões. Em cada questão, deve dizer se a afirmação indicada é falsa (F), assinalando o respetivo quadrado. Em cada questão, a cotação atribuída se alores ou 0 valores, consoante a resposta esteja certa, errada, ou não seja assinalado vamente. A cotação total neste grupo é no mínimo 0 valores.	erá 1	valor
		V	F
1.	As sequências de formação da fórmula $\neg(p_1 \lor p_2) \to (p_1 \lor p_2)$ de comprimento mínimo têm 5 elementos.		
2.	Para quaisquer fórmulas φ e ψ e para qualquer variável proposicional p , $subf(\varphi[\psi/p]) = subf(\varphi) \cup subf(\psi)$.		
3.	Para quaisquer fórmulas φ e ψ , se $\varphi \leftrightarrow \psi$ é tautologia, então φ e ψ são ambas tautologias ou φ e ψ são ambas contradições.		
4.	Para qualquer fórmula φ e para qualquer conjunto de fórmulas Γ , se $\Gamma \cup \{\varphi\}$ é semanticamente inconsistente, então $\Gamma \cup \{\neg \varphi\}$ é semanticamente consistente.		
5.	No sistema formal DNP, existem derivações da fórmula $p_1 \leftrightarrow p_2$ a partir do conjunto		

Grupo II

Para qualquer conjunto de fórmulas Γ , se Γ é maximalmente consistente e $p_1 \vee p_2 \notin \Gamma$,

Nas questões 1.(a), 1.(b), 1.(d), 2. e 3.(a), apresente a sua resposta no espaço disponibilizado a seguir à questão.

- 1. Seja $\mathcal F$ o conjunto das fórmulas proposicionais definido indutivamente pelas seguintes regras:
 - (i) $(p_i \vee p_j) \in \mathcal{F}$, para todo $i \in \mathbb{N}_0$ e para todo $j \in \mathbb{N}_0$;
 - (ii) se $\varphi \in \mathcal{F}$, então $(\neg \varphi) \in \mathcal{F}$, para todo $\varphi \in \mathcal{F}^{CP}$;

de fórmulas $\{\neg p_1, p_1 \rightarrow p_2\}$.

então $\neg p_2 \in \Gamma$.

- (iii) se $\varphi \in \mathcal{F}$ e $\psi \in \mathcal{F}$, então $(\varphi \wedge \psi) \in \mathcal{F}$, para todo $\varphi \in \mathcal{F}^{CP}$ e para todo $\psi \in \mathcal{F}^{CP}$;
- (iv) se $\varphi \in \mathcal{F}$ e $\psi \in \mathcal{F}$, então $(\varphi \to \psi) \in \mathcal{F}$, para todo $\varphi \in \mathcal{F}^{CP}$ e para todo $\psi \in \mathcal{F}^{CP}$.
- (a) A fórmula $((\neg(p_1 \lor p_2)) \to (p_2 \lor p_3))$ pertence a \mathcal{F} ? Justifique. Resposta:

(b) Indique $\varphi \in \mathcal{F}$ tal que $\varphi \Leftrightarrow \neg p_0$. Justifique. Resposta:

- (c) Mostre por indução estrutural que, para todo $\varphi \in \mathcal{F}^{CP}$, existe $\psi \in \mathcal{F}$ tal que $\varphi \Leftrightarrow \psi$.
- (d) Sem justificar, defina por recursão estrutural em \mathcal{F} uma função $f: \mathcal{F} \longrightarrow \{0,1\}$ tal que, para todo $\varphi \in \mathcal{F}$, $f(\varphi) = 1$ se e só se a variável proposicional p_0 não ocorre em φ . Resposta:

2. Apresente uma forma normal conjuntiva logicamente equivalente à fórmula $(p_1 \to p_2) \leftrightarrow (p_3 \lor \bot)$. Justifique.

Resposta:

- 3. Dois programas A e B, que podem apenas terminar com o valor 1 ou com o valor 0, dizem-se equivalentes quando ambos não terminam ou quando ambos terminam com o mesmo valor.
 - (a) Exprima as duas afirmações que se seguem através de fórmulas do Cálculo Proposicional, indicando a frase atómica associada a cada uma das variáveis proposicionais utilizadas.
 - (i) A não termina ou A termina com o valor 1.
 - (ii) A e B são equivalentes.

Resposta:

- (b) Assumindo que as afirmações (i) e (ii) da alínea (a) são verdadeiras e que B termina, o que pode concluir acerca dos programas A e B? Justifique.
- 4. Construa uma demonstração em DNP da fórmula $(\neg p_0 \land (p_1 \rightarrow \bot)) \rightarrow \neg (p_0 \lor p_1)$.
- 5. Sejam $\varphi, \psi \in \mathcal{F}^{CP}$ e seja $\Gamma \subseteq \mathcal{F}^{CP}$. Mostre que se $\Gamma \models \varphi$ e $\neg \varphi$ é teorema de DNP, então existe um subconjunto de Γ que é finito e inconsistente.

Cotações	I.	II.1.	II.2.	II.3.	II.4.	II.5.
Cotações	6	$1,\!25\!+\!1,\!25\!+\!1,\!75\!+\!1,\!25$	1,75	$1,75\!+\!1,75$	1,75	1,5