Departamento de Matemática	Universidade do Minho
Álgebra	2º teste – 14 jan 2021
Lic. em Ciências de Computação/Lic. em Matemática - 2º ano	duração: duas horas
Nome	
Curso Número	
Responda no próprio enunciado, seguindo rigorosamente as instruções dadas en	n cada um dos grupos
responda no proprio enunciado, seguindo rigorosamente as instruções dadas en	r caua um dos grupos
GRUPO I	
Em cada uma das questões seguintes, diga se é verdadeira (V) ou assinalando a opção conveniente. Cada questão está cotada com 0,8 v 0 a 20.	. ,
1. Seja A um anel comutativo com identidade de caraterística 12. Então, A	não é
um domínio de integridade.	V□ F□
2. Se I e J são ideais de um anel A tais que $I \cap J = \{0_A\}$, então, para todo $j \in J$, $ij = 0_A$.	os $i \in I$ e $ \lor \Box \ \ F \Box$
3. A soma de dois subanéis de um anel ${\cal A}$ nunca é um subanel de ${\cal A}$.	V□ F□
4. Sejam A um anel com identidade e I e J ideais maximais de A . Se $I \neq J$ então $IJ = I \cap J$.	<i>T</i> V□ F□
5. Sejam A e A' anéis comutativos com identidade e $\varphi:A\to A'$ um morfismanéis. Então $\varphi(1_A)=1_{A'}.$	mo de V□ F□
GRUPO II	
Em cada uma das questões seguintes, apresente a sua resposta sem Cada questão está cotada com 1,0 valores numa escala de 0 a 20.	ı qualquer justificação.
1. Indique a ordem da permutação $lpha = (123)(2457)$ de \mathcal{S}_7 :	
2. Indique os elementos de $<\beta^3>$, sabendo que $\beta=(123)(45)\in\mathcal{S}_6$:	
3. Indique a paridade da permutação $\gamma \in \mathcal{S}_9$, sabendo que $\gamma^5 = (123)(4579)$	9):
4. Indique duas permutações de \mathcal{S}_9 , com a mesma ordem mas de paridades d	liferentes:

GRUPO III

Em cada uma das questões seguintes, apresente a sua resposta devidamente justificada. Cada questão está cotada com 4,0 valores numa escala de 0 a 20.

- 1. Seja A um anel não nulo. Mostre que:
 - (a) se $a \in A$ é um elemento de ordem 12, então A tem um divisor de zero.
 - (b) se, para todos $a \in A \setminus \{0_A\}$ e $b, c \in A$,

$$ab = ca \Rightarrow b = c,$$

então A é um anel comutativo.

- 2. Sejam A um anel comutativo com identidade, $a,b\in A$ e $I=\{ax+by:x,y\in A\}.$
 - (a) Mostre que I é um ideal de A.
 - (b) Para $A=\mathbb{Z}$, dê exemplo, justificando, de elementos a e b para os quais:

i.
$$I = A$$
;

ii. I é um ideal maximal de A.

- 3. Sejam $n \in \mathbb{N}$ e $f_n : \mathbb{Z}_n \to \mathbb{Z}_n$ a aplicação definida por $f_n([x]_n) = ([x]_n)^n$, para todo $[x]_n \in \mathbb{Z}_n$.
 - (a) Justifique que f_4 não é um endomorfismo de anéis.
 - (b) Mostre que f_3 é um endomorfismo de anéis e determine o seu núcleo.
 - (c) Para que valores de $n\ f_n$ é um endomorfismo de anéis?

GRUPO IV

Esta questão é facultativa. Caso opte por responder, apresente a sua resposta devidamente justificada. A questão está cotada com 2,0 valores extra escala.

1. Considere o subconjunto $X=\{3+\sqrt{-5},7+\sqrt{-5}\}$ do domínio de integridade $D=\mathbb{Z}[\sqrt{-5}].$ Mostre que

 $\exists^1 x \in X : (x)$ é maximal na classe dos ideais principais de D.