Departamento de Matemática	Universidade do Minho
segundo teste :: Álgebra	24 de novembro de 2021
Lic. em Ciências de Computação - 2º ano	duração: uma hora
Proposta de resolução	

Responda no próprio enunciado, seguindo rigorosamente as instruções dadas em cada um dos grupos

GRUPO I

Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a proposição, assinalando a opção conveniente. Cada questão está cotada com 1.2 valores numa escala de 0 a 20.

1.	Se G é grupo e $K, H \lhd G$ então $K \cup H \lhd G$.	V□ F⊠
1.	Se G é grupo e $K, H \lhd G$ então $KH \lhd G$	V⊠ F□
1.	Se G é grupo e $K, H \lhd G$ então $K \cap H \lhd G$	V⊠ F□
	A interseção e o produto de dois subgrupos normais são subgrupos normais. A união de subgrupos é subg só se um dos subgrupos for a própria união.	rupo se e
2.	Se G é um grupo finito e k é um divisor de $ G $, então G admite um elemento de ordem k .	V□ F⊠
	O grupo D_3 tem ordem 6 e tem um elemento de ordem 1, dois elementos de ordem 3 e três elementos de A ordem do grupo admite 6 como divisor e nenhum elemento tem ordem 6.	ordem 2.
2.	Se G é um grupo cíclico finito e k é um divisor de $ G $, então G admite um elemento de ordem k .	V⊠ F□
	Se $G=< a>$ tem ordem $n\in \mathbb{N}$, então, para k divisor de $n,$ $a^{\frac{n}{k}}\in G$ tem ordem $k.$	
2.	Se G é um grupo abeliano finito e k é um divisor de $ G $, então G admite um elemento de ordem k .	V□ F⊠
	O grupo 4-Klein é abeliano e tem ordem 4. Os seus elementos têm ordem 1 ou 2. A ordem do grupo admit divisor e não existe um elemento no grupo com ordem 4.	e 4 como
3.	Seja G um grupo. Então, $\varphi:G\to G$ definida por $\varphi(x)=x^3$, para todo $x\in G$, é um morfismo de grupos.	V□ F⊠
3.	Seja G um grupo abeliano. Então, $\varphi:G\to G$ definida por $\varphi(x)=x^3$, para todo $x\in G$, é um morfismo de grupos.	V⊠ F□
3.	Seja G um grupo. Então, $\varphi:G\to G$ definida por $\varphi(x)=x^{-3}$, para todo $x\in G$, é um morfismo de grupos.	V□ F⊠
	A aplicação $\varphi:G\to G$, definida por $\varphi(x)=x^3$, para todo $x\in G$, é um morfismo se e só se $(xy)^3=x$ todos $x,y\in G$. Sabemos que esta igualdade se verifica se e só se G é abeliano. Conclusão idêntica pode se em vez de 3 tivermos -3.	
4.	Se G é um grupo não abeliano de ordem 8 então G tem pelo menos 3 subgrupos.	V⊠ F□
4.	Se G é um grupo não abeliano de ordem 10 então G tem um subgrupo de ordem ${\bf 5}$.	V⊠ F□
4.	Se G é um grupo não abeliano de ordem 10 então G tem pelo menos 3 subgrupos.	V⊠ F□
	Um grupo não abeliano de ordem 8 tem um subgrupo de ordem 4 (ver exercício 39 da folha 6). Como um	grupo de

ordem 8 admite sempre como subgrupos o subgrupo trivial e o subgrupo impróprio, podemos concluir que um grupo não abeliano de ordem 8 tem pelo menos três subgrupos. A resolução do exercício 39 é análoga se substituirmos 8 por 10, uma vez que $8=2\times 4$ e $10=2\times 5$.

- 5. Se um grupo G tem 7 elementos então $G\simeq \mathbb{Z}_7.$
- 5. Se um grupo G tem 5 elementos então $G\simeq \mathbb{Z}_5.$ V \boxtimes F \square
- 5. Se um grupo G tem 8 elementos então $G\simeq \mathbb{Z}_8$. V \square F \boxtimes

Qualquer grupo com p elementos, com p primo, é cíclico e, por isso, é isomorfo a \mathbb{Z}_p .

O grupo D_4 , das isometrias de um quadrado, tem 8 elementos e não é isomorfo a \mathbb{Z}_8 .

- 6. Se $\varphi:\mathbb{Z}\to\mathbb{Z}_5$ é um morfismo não nulo de grupos então φ é um epimorfismo. V \boxtimes F \square
- 6. Se $\varphi: \mathbb{Z} \to \mathbb{Z}_6$ é um morfismo não nulo de grupos então φ é um epimorfismo. $V \square F \boxtimes$
- 6. Se $\varphi: \mathbb{Z} \to \mathbb{Z}_8$ é um morfismo não nulo de grupos então φ é um epimorfismo. V \square F \boxtimes

Sendo $\varphi: \mathbb{Z} \to \mathbb{Z}_n$ um morfismo não nulo, sabemos que $\varphi(\mathbb{Z}) \neq \{[0]_n\}$ é subgrupo de \mathbb{Z}_n e, por isso, $|\varphi(\mathbb{Z})|$ tem de ser um divisor de n diferente da identidade. Se n é primo, $|\varphi(\mathbb{Z})| = n$ e, por isso, $\varphi(\mathbb{Z}) = \mathbb{Z}_n$. Logo, φ é um epimorfismo (morfismo sobrejetivo).

No caso de n>2 ser par, o morfismo $\varphi:\mathbb{Z}\to\mathbb{Z}_n$ definido por $\varphi(x)=[0]_n$, se x é par, e $\varphi(x)=[\frac{n}{2}]_n$, se x é impar, é claramente não sobrejetivo.

- 7. Sejam G e G' grupos, $H \triangleleft G$ e $H' \triangleleft G'$. Se $G/H \simeq G'/H'$ então $G \simeq G'$.
- 7. Sejam G e G' grupos, $H \lhd G$ e $H' \lhd G'$. Se $G/H \simeq G'/H'$ então $H \simeq H'$. $\bigvee \Box \ \mathsf{F} \boxtimes$
- 7. Sejam G e G' grupos, $H \triangleleft G$ e $H' \triangleleft G'$. Se $G/H \simeq G'/H'$ então $G \simeq G'$ e $H \simeq H'$.

Se considerarmos $G=H=\mathbb{Z}_2$ e $G'=H'=\mathbb{Z}_3$ então G/H e G'/H' são grupos triviais e por isso isomorfos e G e G' não são isomorfos e H e H' não são isomorfos.

- 8. Se G=< a> tem ordem 20, então, G tem 8 geradores. $V \boxtimes F \square$
- 8. Se G=< a> tem ordem 20, então, G tem 10 geradores. $V \square F \boxtimes$
- 8. Se G=< a> tem ordem 20, então, G tem 12 geradores. $V \square \ \mathsf{F} \boxtimes$

Se $G = \langle a \rangle$ tem ordem 20, então, para $1 \leq n \leq 19$, a^n é gerador de G se e só se $\mathrm{m.d.c.}(n,20) = 1$, ou seja, se e só se $n \in \{1,3,7,9,11,13,17,19\}$. Logo, G tem 8 geradores.

Como alternativa de resolução, sabemos que o número de geradores de um grupo cíclico de ordem 20 é dado pelo valor da função de Euler para n=20. O resultado segue de $\varphi(20)=20\times\frac{1}{2}\times\frac{4}{5}=8$.

9. Em
$$S_7$$
, $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 1 & 7 & 6 & 3 \end{pmatrix} = (1 \ 2 \ 3 \ 4)(5 \ 7 \ 2 \ 3)$.

$$(1\ 2\ 3\ 4)(5\ 7\ 2\ 3) = (1\ 2\ 4)(3\ 5\ 7) = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 5 & 1 & 7 & 6 & 3 \end{array}\right).$$

9. Em
$$S_7$$
, $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 7 & 4 & 3 & 2 & 6 & 1 \end{pmatrix} = (1 \ 5 \ 2 \ 7)(2 \ 3 \ 1 \ 4).$

$$(1\ 5\ 2\ 7)(2\ 3\ 1\ 34) = (1\ 4\ 7)(2\ 3\ 5) \neq \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 7 & 4 & 3 & 2 & 6 & 1 \end{array}\right).$$

9. Em
$$S_7$$
, $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 5 & 7 & 2 & 6 & 1 \end{pmatrix} = (1 \ 5 \ 2 \ 7)(2 \ 3 \ 1 \ 4).$

$$(1\ 5\ 2\ 7)(2\ 3\ 1\ 34) = (1\ 4\ 7)(2\ 3\ 5) = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 5 & 7 & 2 & 6 & 1 \end{array}\right).$$

10. A permutação
$$\alpha=(1\ 2\ 3)(2\ 4\ 5)$$
 de S_6 tem ordem 3.

$$\alpha = (1\ 2\ 3)(2\ 4\ 5) = (1\ 2\ 4\ 5\ 3)$$
, pelo que $o(\alpha) = 5$.

10. A permutação
$$\alpha=(1\ 2\ 3)(1\ 4\ 3)$$
 de S_5 tem ordem 3.

$$\alpha = (1\ 2\ 3)(1\ 4\ 3) = (1\ 4)(2\ 3)$$
, pelo que $o(\alpha) = 2$.

 $\alpha = (1\ 2\ 3)(2\ 4\ 5\ 6) = (1\ 2\ 4\ 5\ 6\ 3)$, pelo que $o(\alpha) = 6$.

GRUPO II

Este grupo tem duas questões em alternativa, ambas cotadas com 8.0 valores numa escala de 0 a 20. Deve escolher APENAS UMA DAS QUESTÕES para responder. Se responder às duas, ignorarei a segunda resposta.

- Alternativa 1. Justifique devidamente todas as respostas. Dê um exemplo, caso exista, de
 - (a) um grupo G e dois seus subgrupos H e K tais que $H \lhd G$ e $K \not \lhd G$.

Seja $G=D_3=S_3$, $H=\{id,(1\ 2\ 3),(1\ 3\ 2)\}$ (o subgrupo das rotações) e $K=\{id,(1\ 2)\}$. Então, $H\lhd G$, pois [G:H]=2 e $K\not\lhd G$ pois

$$(2\ 3)K = \{(2\ 3), (1\ 3\ 2)\} \neq \{(2\ 3), (1\ 2\ 3)\} = K(2\ 3).$$

(b) uma permutação ímpar de S_9 com ordem 14.

Seja $\tau=(1\ 2\ 3\ 4\ 5\ 6\ 7)(8\ 9)$. Então, $\tau\in S_9$, $o(\tau)=\mathrm{m.m.c.}(7,2)=14$ (pois os dois ciclos são disjuntos) e τ é uma permutação ímpar uma vez que é produto de um ciclo de comprimento ímpar (ou seja, permutação par) por um ciclo de comprimento par (ou sejam permutação ímpar).

(c) um morfismo de \mathbb{Z}_5 em \mathbb{Z}_6 .

Basta considerar o morfismo nulo, ou seja, o morfismo $\varphi: \mathbb{Z}_5 \to \mathbb{Z}_6$ definido por $\varphi([x]_5) = [0]_6$, para todo $[x]_5 \in \mathbb{Z}_5$.

(d) um grupo G e um subgrupo normal H de G tal que [G:H] seja infinito.

Considere-se o grupo aditivo $G = \mathbb{Z}$ e o seu subgrupo $H = \{0\}$. Então, $G/H = \{\{x\} : x \in \mathbb{Z}\}$, que tem tantos elementos quanto \mathbb{Z} . Logo, [G : H] = |G/H| é infinito.

(e) Um grupo cíclico com 6 subgrupos.

Se $G=\mathbb{Z}_n$, sabemos que G tem exatamente um subgrupo de ordem k, para qualquer k divisor de n. Assim, pretende-se um inteiro n com exatamente 6 divisores. Basta considerar então $G=\mathbb{Z}_{12}$ (qualquer $n=p\cdot q^2$, com p e q primos, servia o propósito, pois os únicos divisores de n são $1,p,q,pq,q^2$ e n).

- **Alternativa 2.** Sejam G um grupo, H e K subgrupos normais de G tais que |H|=m, |K|=n e G=HK. Se $\mathrm{m.d.c.}(m,n)=1$, mostre que:
 - (a) $H \cap K = \{1_G\}$;

Como $H, K \triangleleft G$, sabemos que $H \cap K \triangleleft G$, pelo que $H \cap K \triangleleft G$ e $H \cap K \triangleleft K$. Então, $|H \cap K| \mid m$ e $|H \cap K| \mid n$. Como $\mathrm{m.d.c.}(m,n)=1$, concluímos que $|H \cap K|=1$ e, por isso, $|H \cap K|=\{1_G\}$.

(b) dados $h_1, h_2 \in H$ e $k_1, k_2 \in K$,

$$h_1k_1 = h_2k_2 \Rightarrow h_1 = h_2 \text{ e } k_1 = k_2;$$

Sejam $h_1, h_2 \in H$ e $k_1, k_2 \in K$. Então,

$$h_1 k_1 = h_2 k_2 \quad \Rightarrow h_2^{-1} h_1 k_1 k_1^{-1} = h_2^{-1} h_2 k_2 k_1^{-1}$$

 $\Rightarrow h_2^{-1} h_1 = k_2 k_1^{-1}.$

Como $h_2^{-1}h_1 \in H$ e $k_2k_1^{-1} \in K$, temos que $h_2^{-1}h_1 = k_2k_1^{-1} \in H \cap K = \{1_G\}$. Logo, $h_2^{-1}h_1 = 1_G$ e $k_2k_1^{-1} = 1_G$, pelo que $h_1 = h_2$ e $k_1 = k_2$.

(c) $G/H \simeq K$ e $G/K \simeq H$.

Para provar que $G/H \simeq K$ recorremos ao $\mathbf{2}^o$ **Teorema do Isomorfismo**, que nos diz que se G é um grupo, H < G e $T \lhd G$, então, $(HT)/_T \cong H/_{(H \cap T)}$.

Neste caso, sabemos que G = HK, $H, K \triangleleft G$, $H \cap K = \{1_G\}$, pelo que, da aplicação do teorema, obtemos:

$$G/H = HK/H \simeq K/\{1_G\} \simeq K$$
.

De modo análogo, prova-se que $G/K \simeq H$.