- 22. Sejam G um grupo e H um subgrupo de G. Dados $a,b\in G$, mostre que são equivalentes as seguintes afirmações:
 - (a) $b^{-1}a \in H$;
 - (b) existe $h \in H$ tal que a = bh;
 - (c) $a \in bH$;
 - (d) aH = bH.
- 23. Sejam G um grupo, H um subgrupo de G e $g \in G$. Mostre que gH é um subgrupo de G se e só se $g \in H$.
- 24. Sejam G um grupo finito e H e K subgrupos de G tais que $K \subseteq H$. Mostre que [G:H] divide [G:K].
- 25. Verifique que \mathbb{Z}_{12} tem um subgrupo de ordem k, para cada divisor k de 12.
- 26. Considere o grupo $G = \{1_G, a, b, c, d, e, f, f, g, h, i, j, k\}$ cuja operação é definida pela seguinte tabela de Cayley:

	1_G	a	b	c	d	e	f	g	h	i	j	k
1_G	1_G	a	b	c	d	e	f	g	h	i	j	k
a	a	f	c	g	h	i	1_G	b	j	k	d	e
b	b	d	1_G	e	a	c	i	h	g	f	k	j
c	c	h	a	i	f	g	k	j	b	1_G	e	d
d	d	i	e	h	g	f	b	1_G	k	j	a	c
e	e	g	d	f	i	h	j	k	1_G	b	c	a
f	f	1_G	g	b	j	k	a	c	d	e	h	i
g	g	j	f	k	1_G	b	e	d	c	a	i	h
h	h	k	i	j	b	1_G	c	a	e	d	f	g
i	i	b	h	1_G	k	j	d	e	a	c	g	f
j	j	e	k	d	c	a	g	f	i	h	1_G	b
k	k	c	j	a	e	d	h	i	f	g	b	1_G

Mostre que G não tem qualquer subgrupo de ordem 6.

- 27. Sejam G um grupo e $a \in G$. Determine:
 - (a) $|\langle a \rangle|$, sabendo que $a^{24} = a^{49}$ e $a^5 \neq 1_G$;
 - (b) $|\langle a \rangle|$, sabendo que $a^3 \neq 1_G$ e $a^{11} = a^5$;
 - (c) $|\langle a^4 \rangle|$, sabendo que $a \neq 1_G$ e $a^{56} = a^{72}$.
- 28. Sejam G um grupo e N_1,N_2,H subgrupos de G tais que N_1 é subgrupo normal de N_2 . Mostre que:
 - (a) $N_1 \cap H$ é subgrupo normal de $N_2 \cap H$;
 - (b) Se H é subgrupo normal de G, então N_1H é subgrupo normal de N_2H .
- 29. Seja G um grupo que contém subgrupos normais H e K de ordens m e n, respetivamente, em que $\mathrm{m.d.c.}(m,n)=1$. Prove que:
 - (a) Os elementos de H comutam com os elementos de K;
 - (b) O grupo G contém um subgrupo de ordem mn.