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Area of rectangle 

circle 

triangle 

Surface Area of sphere 

cylinder 

Volume of box 

sphere 

cylinder 

cone 

A = lw 

A = nr2 

A =+bh 

A = 47ir2 

A = 2nrh 

V = lwh 

V =  4nr3 

V = 7ir2h 

V = 4 (area of base) x (height) 

Trigonometric Identities 

Pythagorean 

cos28 + sin26' = I ,  1 + tan28 = sec28, cot2@ + 1 = csc28 
Parity 

sin(-8) = -sinO, cos(-8) = cos8, tan(-8) = -tan0 

CSC(-8) = -cscB, sec(-8) = sec8, cot(-%) = -cot8 

Co-relations 

cosO=sin - - 0  ,cscO=sec - - 8  , c o t 8 = t a n  - - 0  (T 1 (T 1 (; 1 
Addition formulas 

sin(@ + 4) = sin 8 cos + + cos 0 sin + 
sin(8 - +) = sin 8 cos + - cos 0 sin + 
cos(8 + +) = cos 0 cos + - sin 8 sin + 
cos(8 - +) = cos 8 cos + + sin 8 sin + 

(tan 0 + tan +) 
tan(@ + +) = 

(1 - tan 8 tan +) 

(tan 8 - tan +) 
tan(8 - +) = 

(1 + tan 8 tan +) 

Double-angle formulas 

sin 28 = 2 sin 8 cos 8 

cos 28 = cos28 - sin28 = 2 cos28 - I = 1 - 2 sin28 

tan 28 = 
2 tan 0 

(1 - tan2@) 

Half-angle formulas 

. 2 0 - 1 -COSB or sin2@ = 
1 - ~ 0 ~ 2 8  

sin - - - 
2 2 2 

2 8 - 1 + case or cos2@ = 
COS - - - 1 + cos28 

2 2 2 

8 sin8 - 1 - c o s 8  or tan8= tan - = ------- - - 1 - cos 28 
2 1 f c o s 8  sin0 sin 26' 

Product formulas 

1 sin 8 sin + = - [cos(8 - +) - cos(8 + +)I 
2 
1 cos 8 cos + = - [cos(8 + +) + cos(8 - +)I 
2 

sin 8 cos + = 1. [sin(@ + +) + sin(8 - +)I 
2 
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A Brief Table of Integrals 

(An arbitrary constant may.be added to each integral.) 

5. sinxdx= -cosx I 
6. cos x dx = sin x I 
7. tanx dx = -1nlcosxl I 
9. (secx dx = lqlsecx + tanxl 

10. cscxdx=ln~cscx-cotxl  I 
l l . / s i n ' * d x = x s i n - ' 5 + - 2  a a (a>O) 

12. c o s - ' 5 d x = x c o s - ' 5 - J =  (a>O) I a a 
1.3. t an - ' *dx=x tan - ' 5 - a ln ( a2+x2)  (a>O) i a a 2 

I 1 14. sin2mx dx = - (mx - sin mx cos mx) 
2m 

1 15. cos2mx dx = - (mx + sin mx cos mx) 
2m 

16. Isec2x dx = tanx 

17. csc2x dx = -cot x I 
I sinn- ' X  cos x + n - 1 I s i n n - z x  dx 18. sinnxdx= - 

n n 
c o s n  ' x  sin x + n - 1 jcosn -zX dx 

n n 

I - j tann-2xdx ( n # l )  20. tannx dx = - 
n - 1  

cOtn-'x - (cot*-2x dx (n  + 1 )  21. /cotnxdx = - - 
n - 1  

22. secnx dx = i tan x secnP2x + n - 2 j secn - zX  dx 
n - 1  n - 1  (n  f 1 )  

I C O ~ X C S C " - ~ X  n - 2  cscn-2Xdx 23. cscnxdx= - 
n - 1  +-J n - 1  (n  + 1 )  

24. f sinh x dx = cosh x 

26. tanh x dx = lnlcosh xl I 
27. coth x dx = lnlsinh xl I 
28. sechx dx = tan- '(sinh x )  I 

This table is continued on the endpapers at the back. 
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Derivatives 

du 16. * = tanusecu- 
dx dx 

d tan-'u 1 du 20. - - - - 
dx 1 + u2 dx 

dcsc-'u - 23. - - -1  du - 
dx uJ- du 

du 24. dsinhu = cash u - 
dx dx 

du 25. dcoshu = sinhu- 
dx dx 

26. dtanhu = seCh2u dU 
dx  dx 

du 27. dcothu = - (csch2u> - 
dx dx 

28. - - du Seth - - (sech u)(tanh u )  - 
dx dx 

du 29. dcschu = -(cschu)(coth u )  - 
dx dx 

34. d sech- 'u  - - - 1  du - 
dx u l p ' 7 7  dx 

Continued on overleaf 
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Preface 

The goal of this text is to help students learn to use calculus intelligently for 
solving a wide variety of mathematical and physical problems. 

This book is an outgrowth of our teaching of calculus at Berkeley, and 
the present edition incorporates many improvements based on our use of the 
first edition. We list below some of the key features of the book. 

Examples and Exercises 
The exercise sets have been carefully constructed to be of maximum use to the 
students. With few exceptions we adhere to the following policies. 

a+ The section exercises are graded into three consecutive groups: 

(a) The first exercises are routine, modelled almost exactly on the exam- 
ples; these are intended to give students confidence. 

(b) Next come exercises that are still based directly on the examples and 
text but which may have variations of wording or which combine 
different ideas; these are intended to train students to think for 
themselves. 

(c) The last exercises in each set are difficult. These are marked with a 
star (*) and some will challenge even the best students. Difficult does 
not necessarily mean theoretical; often a starred problem is an 
interesting application that requires insight into what calculus is really 
about. 

The exercises come in groups of two and often four similar ones. 
Answers to odd-numbered exercises are available in the back of the 
book, and every other odd exercise (that is, Exercise 1, 5, 9, 13, . . . ) 
has a complete solution in the student guide. Answers to even- 
numbered exercises are not available to the student. 

Placement of Topics 
Teachers of calculus have their own pet arrangement of topics and teaching 
devices. After trying various permutations, we have arrived at the present 
arrangement. Some highlights are the following. 

@ Integration occurs early in Chapter 4; antidijferentiation and the J 
notation with motivation already appear in Chapter 2. 
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viii Preface 

@ Trigonometric functions appear in the first semester in Chapter 5. 
@ The chain rule occurs early in Chapter 2. We have chosen to use 

rate-of-change problems, square roots, and algebraic functions in con- 
junction with the chain rule. Some instructors prefer to introduce sinx 
and cosx early to use with the chain rule, but this has the penalty of 
fragmenting the study of the trigonometric functions. We find the 
present arrangement to be smoother and easier for the students. 

@ Limits are presented in Chapter 1 along with the derivative. However, 
while we do not try to hide the difficulties, technicalities involving 
epsilonics are deferred until Chapter 11. (Better or curious students can 
read this concurrently with Chapter 2.) Our view is that it is very 
important to teach students to differentiate, integrate, and solve calcu- 
lus problems as quickly as possible, without getting delayed by the 
intricacies of limits. After some calculus is learned, the details about 
limits are best appreciated in the context of l'H6pital's rule and infinite 
series. 
Differential equations are presented in Chapter 8 and again in Sections 
12.7, 12.8, and 18.3. Blending differential equations with calculus 
allows for more interesting applications early and meets the needs of 
physics and engineering. 

Prerequisites and Preliminaries 
A historical introduction to calculus is designed to orient students before the 
technical material begins. 

Prerequisite material from algebra, trigonometry, and analytic geometry 
appears in Chapters R, 5, and 14. These topics are treated completely: in fact, 
analytic geometry and trigonometry are treated in enough detail to serve as a 
first introduction to the subjects. However, high school algebra is only lightly 
reviewed, and knowledge of some plane geometry, such as the study of similar 
triangles, is assumed. 

Several orientation quizzes with answers and a review section (Chapter R) 
contribute to bridging the gap between previous training and this book. 
Students are advised to assess themselves and to take a pre-calculus course if 
they lack the necessary background. 

Chapter and Section Structure 
The book is intended for a three-semester sequence with six chapters covered 
per semester. (Four semesters are required if pre-calculus material is included.) 

The length of chapter sections is guided by the following typical course 
plan: If six chapters are covered per semester (this typically means four or five 
student contact hours per week) then approximately two sections must be 
covered each week. Of course this schedule must be adjusted to students' 
background and individual coufse requirements, but it gives an idea of the 
pace of the text. 

Proofs and Rigor 
Proofs are given for the most important theorems, with the customary omis- 
sion of proofs of the intermediate value theorem and other consequences of 
the completeness axiom. Our treatment of integration enables us to give 
particularly simple proofs of some of the main results in that area, such as the 
fundamental theorem of calculus. We de-emphasize the theory of limits, 
leaving a detailed study to Chapter 11, after students have mastered the 
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Preface ix 

fundamentals of calculus-differentiation and integration. Our book Calculus 
Unlimited (Benjamin/Cummings) contains all the proofs omitted in this text 
and additional ideas suitable for supplementary topics for good students. 
Other references for the theory are Spivak's Calculus (Benjamin/Cummings & 
Publish or Perish), Ross' Elementary Analysis: The Theory of Calculus 
(Springer) and Marsden's Elementary Classical Analysis (Freeman). 

Calculator applications are used for motivation (such as for functions and 
composition on pages 40 and 112) and to illustrate the numerical content of 
calculus (see, for instance, p. 405 and Section 11.5). Special calculator discus- 
sions tell how to use a calculator and recognize its advantages and shortcom- 
ings. 

Applications 
Calculus students should not be treated as if they are already the engineers, 
physicists, biologists, mathematicians, physicians, or business executives they 
may be preparing to become. Nevertheless calculus is a subject intimately tied 
to the physical world, and we feel that it is misleading to teach it any other 
way. Simple examples related to distance and velocity are used throughout the 
text. Somewhat more special applications occur in examples and exercises, 
some of which may be skipped at the instructor's discretion. Additional 
connections between calculus and applications occur in various section sup- 
plements throughout the text. For example, the use of calculus in the determi- 
nation of the length of a day occurs at the end of Chapters 5, 9, and 14. 

Visualization 
The ability to visualize basic graphs and to interpret them mentally is very 
important in calculus and in subsequent mathematics courses. We have tried 
to help students gain facility in forming and using visual images by including 
plenty of carefully chosen artwork. This facility should also be encouraged in 
the solving of exercises. 

Computer-Generated Graphics 
Computer-generated graphics are becoming increasingly important as a tool 
for the study of calculus. High-resolution plotters were used to plot the graphs 
of curves and surfaces which arose in the study of Taylor polynomial 
approximation, maxima and minima for several variables, and three- 
dimensional surface geometry. Many of the computer drawn figures were 
kindly supplied by Jerry Kazdan. 

Supplements 

Student Guide Contains 

@ Goals and guides for the student 
@ Solutions to every other odd-numbered exercise 
@ Sample exams 

Instructor's Guide Contains 

@ Suggestions for the instructor, section by section 
@ Sample exams 
@ Supplementary answers 
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x Preface 

Misprints 
Misprints are a plague to authors (and readers) of mathematical textbooks. 
We have made a special effort to weed them out, and we will be grateful to the 
readers who help us eliminate any that remain. 

Acknowledgments 
We thank our students, readers, numerous reviewers and assistants for their 
help with the first and current edition. For this edition we are especially 
grateful to Ray Sachs for his aid in matching the text to student needs, to Fred 
Soon and Fred Daniels for their unfailing support, and to Connie Calica for 
her accurate typing. Several people who helped us with the first edition 
deserve our continued thanks. These include Roger Apodaca, Grant Gustaf- 
son, Mike Hoffman, Dana Kwong, Teresa Ling, Tudor Ratiu, and Tony 
Tromba. 

Berkeley, California 
Jerry Marsden 

Alan Weinstein 
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How to Use this Book: 
A Note to the Student 

Begin by orienting yourself. Get a rough feel for what we are trying to 
accomplish in calculus by rapidly reading the Introduction and the Preface 
and by looking at some of the chapter headings. 

Next, make a preliminary assessment of your own preparation for calcu- 
lus by taking the quizzes on pages 13 and 14. If you need to, study Chapter R 
in detail and begin reviewing trigonometry (Section 5.1) as soon as possible. 

You can learn a little bit about calculus by reading this book, but you 
can learn to use calculus only by practicing it yourself. You should do many 
more exercises than are assigned to you as homework. The answers at the 
back of the book and solutions in the student guide will help you monitor 
your own progress. There are a lot of examples with complete solutions to help 
you with the exercises. The end of each example is marked with the symbol 
A. 

Remember that even an experienced mathematician often cannot "see" 
the entire solution to a problem at once; in many cases it helps to begin 
systematically, and then the solution will fall into place. 

Instructors vary in their expectations of students as far as the degree to 
which answers should be simplified and the extent to which the theory should 
be mastered. In the book we have arranged the theory so that only the proofs 
of the most important theorems are given in the text; the ends of proofs are 
marked with the symbol II. Often, technical points are treated in the starred 
exercises. 

In order to prepare for examinations, try reworking the examples in the 
text and the sample examinations in the Student Guide without looking at the 
solutions. Be sure that you can do all of the assigned homework problems. 

When writing solutions to homework or exam problems, you should use 
the English language liberally and correctly. A page of disconnected formulas 
with no explanatory words is incomprehensible. 

We have written the book with your needs in mind. Please inform us of 
shortcomings you have found so we can correct them for future students. We 
wish you luck in the course and hope that you find the study of calculus 
stimulating, enjoyable, and useful. 

Jerry Marsden 
Alan Weinstein 
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Chapter 7 

Basic Methods of 

Learning the art of inlegration requires practice. 

In this chapter, we first collect in a more systematic way some of the 
integration formulas derived in Chapters 4-6. We then present the two most 
important general techniques: integration by substitution and integration by 
parts. As the techniques for evaluating integrals are developed, you will see 
that integration is a more subtle process than differentiation and that it takes 
practice to learn which method should be used in a given problem. 

7.1 Calculating Integrals 
The rules for differentiating the trigonometric and exponential functions lead to 
new integration formulas. 

In this section, we review the basic integration formulas learned in Chapter 4, 
and we summarize the integration rules for trigonometric and exponential 
functions developed in Chapters 5 and 6. 

Given a function f ( x ) ,  J f ( x ) d x  denotes the general antiderivative of f, 
also called the indefinite integral. Thus 

( f ( x )  d x  = F ( x )  + C, 

where F'(x) = f ( x )  and C is a constant. Therefore, 

dj f ( x ) d x =  f ( x ) .  
dx  

The definite integral is obtained via the fundamental theorem of calculus by 
evaluating the indefinite integral at the two limits and subtracting. Thus: 

Ib  f ( x )  dx= F ( x ) / ~ ,  = F ( b )  - F(n) .  

We recall the following general rules for antiderivatives (see Section 2.5), 
which may be deduced from the corresponding differentiation rules. To check 
the sum rule, for instance, we must see if 

But this is true by the sum rule for derivatives. 
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338 Chapter 7 Basic Methods of Integration 

I Sum and Constant Multi~le Rules for I 

The antiderivative rule for powers is given as follows: 

The power rule for integer n was introduced in Section 2.5, and was extended 
in Section 6.3 to cover the case n = - 1 and then to all real numbers n, 
rational or irrational. 

Example 1 Calculate (a) x 3 + 8 x + 3  J ( 3 ~ ~ / ~ + 8 ) d x ; ( b ) I (  ) dx; (c) I ( x n  + x3)dx. 
X 

Solutlon (a) By the sum and constant multiple rules, 

By the power rule, this becomes 

Applying the fundamental theorem to the power rule, we obtain the rule for 
definite integrals of powers: 

1 

I Definite Integral of a Power I 
fornreal, n f  -1. 

If n = - 2, - 3, - 4, . . . , a and b must have the same sign. If n is not an 
integer, a and b must be positive (or zero if > 0). 

I Again a and b must have the same sign. 
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7.4 Calculating Integrals 339 

The extra conditions on a and b are imposed because the integrand must 
be defined and continuous on the domain of integration; otherwise the 
fundamental theorem does not apply. (See Exercise 46.) 

Example 2 Evaluate (a) L 1 ( x 4  - 3 6 ) d x ;  (b) 12(& + + ) dx;  
1 

(c) 
( x4 + X' + ' ) dx. 

1 /2 x2 
1 x 3 / 2  

Solution (a) j 1 ( x 4  - 3 6 )  dx = l ( x 4  - 3 6 )  dxlo= $ - 3 . -- 1 
0 3/2 0 

In the following box, we recall some general properties satisfied by the definite 
integral. These properties were discussed in Chapter 4. 

1. Inequality rule: If f (x )  < g(x)  for all x in [a,  b],  then 

3. Constant multiple rule: 

4.  Endpoint additivity rule: 

i c / ( X )  dx = i b f ( x )  dx + L C f ( x )  dx, a < b < c. 

5 .  Wrong-way integrals : 
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340 Chapter 7 Basic Methods of Integration 

If we consider the integral as the area under the graph, then the endpoint 
additivity rule is just the principle of addition of areas (see Fig. 7.1.1). 

Figure 7.1.1. The area of 
the entire figure is 
I: f (x ,dx  = J:flx,dx + 
r',f(x) dx, which is the sum 
bf the areas of the two 

I 

b 
subfigures. 

Example 3 Let 

Draw a graph off and evaluate f(t)dt. 

Solution The graph off is drawn in Fig. 7.1.2. To evaluate the integral, we apply the 
endpoint additivity rule with a = 0, b = $ , and c = 1 : 

Let us recall that the alternative form of the fundamental theorem of calculus 
Figure 7.1.2. The integral states that iff is C O ~ ~ ~ ~ U O U S ,  then 
off on [O,l] is the sum of 
its integrals on [0, f ] and 

I t ,  11. 

Example 4 Find d I t 2 . / 1  ds. 
dt 

Solution We write g(t) = J $ d x d s  as f(t2), where f(u) = ~;J-ds. By the 
fundamental theorem (alternative version), f'(u) = Jx ; by the chain 
rule, gr(t) = f'(t2)[d(t2)/dt] = K+ 2t6 . 2 t. A 

As we developed the calculus of the trigonometric and exponential functions, 
we obtained formulas for the antiderivatives of certain of these functions. For 
convenience, we summarize those formulas. Here are the formulas from 
Chapter 5: 
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7.1 Calculating Integrals 341 

By combining the fundamental theorem of calculus with these formulas and 
the ones in the tables on the endpapers of this book, we can compute many 
definite integrals. 

Example 5 Evaluate (a) (x4 + 2x + sinx) dx; (b) I" 
Solution (a) We begin by calculating the indefinite integral, using the sum and constant 

multiple rules, the power rule, and the fact that the antiderivative of sinx is 
- cosx + C: 

I ( x 4  + 2x + sinx)dx x4dx+ 2 xdx+ sinxdx =I I I 
= x5/5 + x2 - COSX + C. 

The fundamental theorem then gives 

1 ( x 4  + 2x + sinx) dx 

n5 n5 = - + n 2 + 1 + 1 = 2 + m 2 + - ~ ~ 7 3 . 0 7 .  
5 5 

(b) An antiderivative of cos 3x is, by guesswork, isin 3x. Thus 

1 ~ / 6  1 
IV"cos 3x dx = - sin 3x 1 

3 =-sin;= - 3 I 3 

(c) From the preceding box, we have 
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and so by the fundamental theorem, 

1 1/2 dy= sin- y l l / 2  = sin-' ( 4 )  - sin-'(- 4 )  

The following box summarizes the antidifferentiation formulas obtained in 
Chapter 6. 

Example 6 Find (a) J1 2  ̂dx; (b) I ' (3ex  + 2 6 )  dx; (c) 1'2" dy. 
- 1 0 

2" 
1 

solution (a) I' 2-'dx = - 1 = 2 - = - - -2.164. 
- 1 In2 - 1  ln2 ln2 21n2 

(b) J 1 ( 3 e x + 2 ~ ) d x = 3  eXdx+2 x1/'dx 
0 I' I' 

4 5 = 3 e - 3 + - = 3 e -  -=6.488. 
3 3 

(c) By a law of exponents, 2 2 ~  = (22)J' = 4. Thus, 

5 
Example 7 (a) Differentiate xlnx. (b) Find Jlnxdx. (c) Find lnxdx. 

Solution (a) By the product rule for derivatives, 

d 1 - (xlnx) = lnx + x . - = lnx + 1. 
dx x 

(b) From (a), J(ln x + 1) dx = x lnx + C. Hence, 

Jlnxdx= xlnx - x + C. 

(c) ~ 5 1 n ~ d ~ = ( x l n x - x ) / ~ = ( 5 1 n 5 - 5 ) - ( 2 1 n 2 - 2 )  2 

= 5In5 - 21n2 - 3. A 
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Finally we recall by means of a few examples how integrals can be used to 
solve area and rate problems. 

Example 8 (a) Find the area between the x axis, the curve y = l /x ,  and the lines 
X =  - e 3  a n d x =  - e .  
(b) Find the area between the graphs of cosx and sinx on [0, ~ / 4 ] .  

Solution (a) For - e3 < x < - e, we notice that l / x  is negative. Therefore the graph of 
l / x  lies below the x axis (the graph of y = O), and the area is 

See Fig. 7.1.3. 

Figure 7.1.3. Find the 
shaded area. 

(b) Since 0 & sinx & cosx for x in [0, m/4] (see Fig. 7.1.4), the formula 

Figure 7.1.4. Find the area 
of the shaded region. 

for the area between two graphs (see Section 4.6) gives 

Example 9 Water flows into a tank at the rate of 2t + 3 liters per minute, where t is the 
time measured in hours after noon. If the tank is empty at noon and has a 
capacity of 1000 liters, when will it be full? 

Solution First we should express everything in terms of the same unit of time. Choosing 
hours, we convert the rate of 2t + 3 liters per minute to 60(2t + 3) = 120t + 
180 liters per hour. The total amount of water in the tank at time T  hours past 
noon is the integral 

The tank is full when 60 T~ + 180 T  = 1000. Solving for T by the quadratic 
formula, we find T w  2.849 hours past noon, so the tank is full at 2:51 P.M. A 
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Example 10 Let P(t) denote the population of bacteria in a certain colony at time t. 
Suppose that P(0) = 100 and that P is increasing at a rate of 20e3' bacteria per 
day at time t. How many bacteria are there after 50 days? 

Solution We are given P'(t) = 20e3' and P(0) = 100. Taking the antiderivative of Pf(t) 
gives P(t) = 9 e3' + C. Substituting P(0) = 100 gives C = 100 - y . Hence 
P(t) = 100 + 9(e3' - I), and P(50) = 100 + y(eis0  - 1) m 9.2 x bacteria. 
(This exceeds the number of atoms in the universe, so growth cannot go on at 
such a rate and our model for bacterial growth must become invalid.) 

Exercises for Section 7.1 
Evaluate the indefinite integrals in Exercises 1-8. 

J 

8. J(e3' - 8 sin2x + x - l d x  

Evaluate the definite integrals in Exercises 9-34. 

19. f ( 3  sin 0 + 4 cos 0) dB 

20. c / 4 3  sin 4x + 4 cos 3x) dx 

35. Check the formula 

and evaluate 3 x \ 1 1 d x .  6 
36. (a) Check the integral 

(b) Evaluate (l/x-) dx. L4 
37. (a) Verify that Ixex2dx  = 4 ox' + C. 

(b) Evaluate 1'(2xex' + 3 in x) dx (see Exam- 

ple 7). 
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38. (a) Verify the formula 

(b) Evaluate J 3 1 2 [ d n  /XI  dx. 
2 5 

39. Suppose that Jo f (0 dt = 5, j f (t) dt = 6, and 
5 2 

f (t) dt = 3. Find (a) f (t) dt and (b) f (t) dt. 
0 5 

(c) Show that f (t) < 0 for some t in (5,7). 

40. Find J3[4f(s) + 3 / F ]  ds, where f(s)ds = 6. X3 
41. Find ex+sin5x dx. 

dt 1 2  

d 42. Compute c2(sin2t + eCos dt. 

43. Let 

- l < t < O ,  
O < t < 2 ,  
2 < t < 3 .  

Compute JT3,j( t) dt . 
44. Let 

Compute J1h(x) dx. 

45. Let f(x) = sin x, 

and h(x) = 1/x2. Find: 

(a) J"I2 f(x)g(x)dx; (b) J3g(x)h(x)dx; 
- "12 1 

(c) Jx f(t)g(t)dt, for x in (O,a]. Draw a graph 
"/2 

d this function of x. 
46. We have 1/x4 > 0 for all x. On the other hand, 

I(dx/x4) =Jx-'dx = (xp3/- 3) + C, so 

How can a positive function have a negative 
integral? 

Find the area under the graph of each of the functions 
in Exercises 47-50 on the stated interval. 

47. on [0,2]. [Hint: Divide.] 
x 2 +  1 

dx 
50. sin x - cos 2x on [; ,;I. 

51. Find the area under the graph of y = eZx be- 
tween x = 0 and x = 1. 

52. A region containing the origin is cut out by the 
curves y = l / G ,  = - 1 / 6 ,  = I/-, and 
y = - I /- and the lines x = + 4, y = + 4; 
see Fig. 7.1.5. Find the area of this region. 

I (0, -4) 
Figure 7.1.5. Find the area 
of the shaded region. 

53. Find the area of the shaded region in Fig. 7.1.6. 

Figure 7.1.6. Find the area of the "retina." 

54. Find the area of the shaded "flower" in Fig. 
7.1.7. 

Figure 7.1.7. Find the shaded area. 

55. Illustrate in terns of areas the fact that 

f % n x d x =  2, if n is an odd positive integer; 
0, if n is an even positive integer. 
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56. Find the area of the shaded region in Fig. 7.1.8. 

Figure 7.1.8. Find the area of the shaded region. 

57. Assuming without proof that 

L"/'sin2x dx = J-,"/'cos2x dx (see Fig. 7.1.9), 

find c i2s in2  x dx. (Hint: sin2x + cos2x = 1 .) 

Figure 7.1.9. The areas under the graphs of sin2x 
and cos2x on [0, n/2] are equal. 

58. Find: 
(a) l cos2xdx ;  

(b) I(cos2x - sin2x) dx ; 

(c) I (cos2x + sin2x) dx ; 

(d) lcos2x dx (use parts (b) and (c)); 

(e) c / 2 c o ~ 2 x  dx and 

with Exercise 57). 

59. (a) Show that sin t cos t dt = f sin2( + C. I 
(b) Using the identity sin 2t = 2 sin t cos t, show 

that s in tcos td t=-+cos2 t+C.  I 
(c) Use each of parts (a) and (b) to compute I;'& t c o ~  t dr. Compare your answers. 

60. Find the area of the shaded region in Fig. 7.1.10. 

Figure 7.1.10. Find the 
I shaded area. 

61. Show that the area under the graph of f(x) 
= 1/(1 + x2) on [a, b] is less than n, no matter 
what the values of a and b may be. 

62. Show: the area under the graph of 1 /(x2 + x6) 
between x = 2 and x = 3 is smaller than &. 

63. A particle starts at the origin and has velocity 
v(t) = 7 + 4t3 + 6 sin (nt) centimeters per second 
after t seconds. Find the distance travelled in 200 
seconds. 

64. The sales of a clothing company t days after 
January I are given by S(t) = 260e(O.')' dollars 
per day. 
(a) Set up a definite integral which gives the 

accumulated sales on 0 < t < 10. 
(b) Find the accumulated sales for the first 10 

days. 
(c) How many days must pass before sales ex- 

ceed $900 per day? 
65. Each unit in a four-plex rents for $230/month. 

The owner will trade the property in five years. 
He wants to know the capital value of the prop- 
erty over a five-year period for continuous inter- 
est of 8.25%, that is, the amount he could borrow 
now at 8.25% continuous interest, to be paid back 
by the rents over the next five years. This 
amount A is given by A = J T ~ e - ~ ' d t ,  where 
R = annual rents, k = annual continuous interest 
rate, T = period in years. 
(a) Verify that A = (R/ k)(l - e-kT). 
(b) Find A for the four-plex problem. 

66. The strain energy V, for a simply supported uni- 
form beam with a load P at its center is 

The flexural rigidity EI and the bar length I are 
constants, EI + 0 and I > 0. Find V,. 

67. A manufacturer determines by curve-fitting 
methods that its marginal revenue is given by 
R1(t) = 1000e"~ and its marginal cost by C1(t) 
= 1000 - 2t, t days after January 1.  The revenue 
and cost are in dollars. 
(a) Suppose R(0) = 0, C(0) = 0. Find, by means 

of integration, formulas for R(t) and C(t). 
(b) The total profit is P = R - C. Find the total 

profit for the first seven days. 
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68. The probability P that a capacitor manufactured 
by an electronics company will last between 
three and five years with normal use is given 

approximately by  P = (22.05)t - 3  dt. L5 
(a) Find the probability P. 

(b)  Verify that (22.05)t - 3  dt = 1, which says L7 
that all capacitors have expected life be- 
tween three and seven years. 

7.2 lntegration by Substitution 

1 69. Using the identity - - 
t 

*70. Compute - dt by writing J- t2(t + 1 )  

for suitable constants A ,  B, C. 

347 

find 

7.2 Integration by 
Substitution 
Integrating the chain rule leads to the method of substitution. 

The method of integration by substitution is based on the chain rule for 
differentiation. If F and g  are differentiable functions, the chain rule tells us 
that ( F  0 g)'(x) = F' (g(x ) )g f (x ) ;  that is, F ( g ( x ) )  is an antiderivative of 
F'(g(x))gf(x) .  In indefinite integral notation, we have 

As in differentiation, it is convenient to introduce an intermediate variable 
u  = g ( x ) ;  then the preceding formula becomes 

SF'(U) dx dx = F ( u )  + C. 

If we write f (u )  for Ff(u) ,  so that J f (u )du  = F(u)  + C, we obtain, the formula 

This formula is easy to remember, since one may "cancel the dx's." 
To apply the method of substitution one must find in a given integrand 

an expression u  = g ( x )  whose derivative d u / d x  = g'(x) also occurs in the 
integrand. 

Example 1 Find 2 x  x 2  + 1 dx  and check the answer by differentiation. S F  
Solution None of the rules in Section 7.1 apply to this integral, so we try integration by 

substitution. Noticing that 2 x ,  the derivative of x2 + I, occurs in the inte- 
grand, we are led to write u  = x 2  + 1 ;  then we have 

J ~ X J ? G T ~ X = J J I X ' + I . ~ X ~ X =  f i  - dx. I ( 2 )  
By formula (I), the last integral equals J f i d u  = J U ' / ~ ~ U  = $ u3l2 + C.  At this 
point we substitute x 2  + 1 for U ,  which gives 

Checking our answer by differentiating has educational as well as insur- 
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ance value, since it will show how the chain rule produces the integrand we 
started with: 

as it should be. A 

Sometimes the derivative of the intermediate variable is "hidden" in the 
integrand. If we are clever, however, we can still use the method of substitu- 
tion, as the next example shows. 

Example 2 Find cos2x sin x dx. I 
Solution We are tempted to make the substitution u = cosx, but du/dx is then - sinx 

rather than sinx. No matter-we can rewrite the integral as 

- cos2x)( - sinx) dx. 

Setting u = cosx, we have 

Icos2x sin x dx = - + c o h  + C. 

You may check this by differentiating. A 

dx. Example 3 Find 

Solution We cannot just let u = 1 + e2X, because du/dx = 2e2" # ex; but we may 
recognize that e2" = and remember that the derivative of ex is ex. 
Making the substitution u = ex and du/dx = ex, we have 

= tan- 'u + C = tan- '(ex) + C. 

Again you should check this by differentiation. A 

We may summarize the method of substitution as developed so far (see Fig. 
7.2.1). 

derivative du/dx, write the integrand in the form f(u)(du/dx), incorpo- 
rating constant factors as required in f(u). Then apply the formula 

Finally, evaluate Jf(u)du if you can; then substitute for u its expression 
in terms of x. 
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Figure 7.2.1. How to spot u 
in a substitution problem. 

/ (expression in 1 0  . (tlerivative o l . 10  (1.1, = I ( express io~ i  in 1 1 )  tllr -- 
Example 4 Find (a) ~x2s in (x3)  dx, (b) j s in  2x dx. 

Solution (a) We observe that the factor x2 is, apart from a factor of 3, the derivative of 
x3. Substitute u = x3, so du/dx = 3x2 and x2 = + du/dx. Thus 

du sin u dx = - sm u) - dx 
3 ' I ( '  dx 

1 = L i s i n u d u -  - c o s u  + C. 
3 3 

Hence Jx2sin(x3)dx = - f cos(x3) + C. 
(b) Substitute u = 2x, so du/dx = 2. Then 

du Ssin 2x dx = l f (sin 2x)2 dx = - sin u - dx 
2 ' S  dx 

1 = i s inudu= - - cosu + C. 
2 2 

Thus 

Example 5 Evaluate: (a) dt [Hint: Complete the square in 
t2 - 6t + 10 

the denominator], and (c) sin22x cos 2x dx. I 
Solution (a) Set u = x3 + 5; du/dx = 3x2. Then 

1 
= f $ = l l n u l  + C = -lnlx3 + 51 + C,  

3 3 
(b) Completing the square (see Section R.1), we find 

t2 - 6t + 10 =.(t2 - 6t + 9) - 9 + 10 

= (t - 312 + 1 

We set u = t - 3; du/dt = 1. Then 

(c) We first substitute u = 2x, as in Example 4(b). Since du/dx = 2, 

i 1 du Isin22x cos 2x dx = sin2u cos u - - dx = 
2 dx 
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At this point, we notice that another substitution is appropriate: we set 
s = sinu and ds/du = cosu. Then 

I 2 Jsin2u cos u du = - s2 &. du du = 1 2 

Now we must put our answer in terms of x. Since s = sin u and u = 2x, we 
have 

s3 sin3u + - sin32x + C. Jsin22x cos 2x dx = - + c = - 
6 6 6 

You should check this formula by differentiating. 
You may have noticed that we could have done this problem in one step 

by substituting u = sin2x in the beginning. We did the problem the long way 
to show that you can solve an integration problem even if you do not see 
everything at once. A 

Two simple substitutions are so useful that they are worth noting explicitly. 
We have already used them in the preceding examples. The first is the shifting 
rule, obtained by the substitution u = x + a, where a is a constant. Here 
du/dx = 1. 

The second rule is the scaling rule, obtained by substituting u = bx, where b is 
a constant. Here du/dx = b. The substitution corresponds to a change of scale 
on the x axis. 

Example 6 Find (a) , sec2(x + 7)dx and (b) l c o s  1Oxdx. S 
Solution ,(a) Since Jsec2u du = tan u + C, the shifting rule gives 

Isec2(x + 7) dx = tan(x + 7) + C. 

(b) Since Jcos u du = sin u + C, the scaling rule gives 

Jcos IOX dx= Bsin(IOx) + C. A 
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You do not need to memorize the shifting and scaling rules as such; however, 
the underlying substitutions are so common that you should learn to use them 
rapidly and accurately. 

To conclude this section, we shall introduce a useful device called 
differential notation, which makes the substitution process more mechanical. In 
particular, this notation helps keep track of the constant factors which must be 
distributed between the f(u) and du/dx parts of the integrand. We illustrate 
the device with an example before explaining why it works. 

Example 7 Find x4 + dx. J (x5 + loxf 

Solution We wish to substitute u = x5 + lox; note that du/dx = 5x4 + 10. Pretending 
that du/dx is a fraction, we may "solve for dx," writing dx = du/(5x4 + 10). 
Now we substitute u for x5 + lox and du/(5x4 + 10) for dx in our integral to 
obtain 

Notice that the (x4 + 2)'s cancelled, leaving us an integral in u which we can 
evaluate: 

Substituting x5 + lox for u gives 

Although du/dx is not really a fraction, we can still justify "solving for dx" 
when we integrate by substitution. Suppose that we are trying to integrate 
Jh(x)dx by substituting u = g(x). Solving du/dx = gf(x) for dx amounts to 
replacing dx by du/gr(x) and hence writing 

Now suppose that we can express h(x)/gr(x) in terms of u, i.e., h(x)/gr(x) 
= f(u) for some function f. Then we are saying that h(x) = f(u)gr(x) = 

f(g(x))gr(x), and equation (2) just says 

which is the form of integration by substitution we have been using all along. 

Example 8 Find J ( 5 ) dx. 

Solution Let u = l /x ;  du/dx = - 1/x2 and dx = - x2du, so 

and therefore 
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1. Choose a new variable u = g(x). 
2. Differentiate to get du/dx = g'(x) and then solve for dx. 
3. Replace dx in the integral by the expression found in step 2. 
4. Try to express the new integrand completely in terms of u, eliminating 

x. (If you cannot, try another substitution or another method.) 
5. Evaluate the new integral Jf(u)du (if you can). 
6. Express the result in terms of x. 
7. Check by differentiating. 

Example 9 (a) Calculate the following integrals: (a) x2 + 2~ dx, 

pT3-T i -  
(b) I c o s  x [cos(sin x)] dx, and (c) J ( dx . 

Solution (a) Let u = x3 + 3x2 + 1; du/dx = 3x2 + 6x, so dx = du/(3x2 + 6x) and 

Thus 

+ 3 ~ 2  + 1)2~3 + c. 

(b) Let u = sinx; du/dx = cosx, dx = du/cosx, so 

du l c o s  x[cos(sin x) ] dx = l c o s  x [cos(sin x) ] 

=Jcosudu= sinu + C, 

and therefore 

l c o s  x [ cos(sin x) ] dx = sin(sin x) + C .  

(c) Let u = 1 + lnx; du/dx = l /x,  dx = xdu, so 

and therefore 
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Exercises for Section 7.2 
Evaluate each o f  the integrals in Exercises 1-6 by 
making the indicated substitution, and check your an- 2 ,,I  )dl 
swers by differentiating. ,lP'-TTZT 

dx 
1 .  ( 2 x ( x 2  + 4)3/2dx; u = x2  + 4. 

2. ( ( x  + l ) (x2  + 2x  - 4)-4dx;  u = x 2  + 2x  - 4. Evaluate the indefinite integrals in Exercises 23-36. 

zY7 + 1 
3. d y ; x = y 8 + 4 y -  1 .  

23. ( t w  dt. 

I ( y 8  + 4y - 1) 24. ( t m  dt. 
4. % dx;  u = xi. 

25. (cos30dB. [Hint: Use cos26 + sin2B = 1.1 

5. ( d6; u = tan0. 

6. ( tanx  dx;  u = C O S X .  

Evaluate each o f  the integrals in Exercises 7-22 by the 
method o f  substitution, and check your answer by 
differentiating. 

7.  I ( x  + l)cos(x2 + 2x )  dx 

8. f u sin(u2) du 

29. dx. [Hinr: Let x = 2 sinu.] 

30. Is in2x dx. (Use cos 2x  = 1 - 2 sin2x.) 

cos e 31. ( - dB. 
1 + s m 6  

32. [sec2x(etan " + 1) dx. 

e2s ds. 34. J 3 

37. Compute Jsin x cos x dx by each o f  the following 
three methods: (a)  Substitute u = sinx, ( b )  substi- 
tute u = cos x ,  ( c )  use the identity sin 2x = 

2 sin x cos x .  Show that the three answers you get 
are really the same. 

38. Compute Jeaxdx ,  where a is constant, by  each 
o f  the following substitutions: (a)  u = ax;  ( b )  
u = ex .  Show that you get the same answer either 
way. 

*39. For which values o f  m and n can Jsinmx cosnx dx 
be evaluated by using a substitution u = sinx or 
u = cosx and the identity cos2x + sin2x = l? 

~ 4 0 .  For which values o f  r can Jtanrx dx be evaluated 
by  the substitution suggested in Exercise 39? 
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7.3 Changing Variables 
in the Definite Integral 
When you change variables in a definite integral, you must keep track of the 
endpoints. 

We have just learned how to evaluate many indefinite integrals by the method 
of substitution. Using the fundamental theorem of calculus, we can use this 
knowledge to evaluate definite integrals as well. 

Example 1 Find lo2/= dx. 

Solution Substitute u = x + 3, du = dx. Then 

2 2 ~ / ~ d x = l f i d u =  -u3/'+ 3 C =  - ( x  3 + 313"+ C. 

By the fundamental theorem of calculus, 

To check this result we observe that, on the interval [O, 21, dm lies between 
f i  ( w  1.73) and 6 (w 2.24), so the integral must lie between 2 0  ( m  3.46) and 
2 6 ( =  4.47). (This check actually enabled the authors to spot an error in their 
first attempted solution of this problem.) A 

Notice that we must express the indefinite integral in terms of x before 
plugging in the endpoints 0 and 2, since they refer to values of x .  It is possible, 
however, to evaluate the definite integral directly in the u variable-provided 
that we change the endpoints. We offer an example before stating the general 
procedure. 

Example 2 Find s4 --.?L dx. 
1 1 + x 4  

Solution Substitute u = x2,  du = 2 x d x ,  that is, x dx = du/2. As x runs from 1 to 4, 
u = x 2  runs from I to 16, so we have 

In general, suppose that we have an integral of the form Jy(g(x ) )g ' (x )dx .  If 
F1(u)  = f(u),  then F ( g ( x ) )  is an antiderivative of f ( g ( x ) )g l ( x ) ;  by the 
fundamental theorem of calculus, we have 

However, the right-hand side is equal to I;):] f(u)du, so we have the formula 

Notice that g(a)  and g(b)  are the values of u = g ( x )  when x = a and b, 
respectively. Thus we can evaluate an integral Jb,h(x)dx by writing h ( x )  as 
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f ( g ( ~ ) ) ~ ' ( x )  and using the formula 

l b h  (x) dx = 1 ""f (u) du. 
g(a) 

Example 3 Evaluate dr/4cos 26 d6. 

Solution Let u = 26; d6 = 4 du; u = 0 when 6 = 0, u = n/2 when 6 = n/4. Thus 

: "r2 1 "/2 
["COS 20 do = - cos u du = - sin u 1, = f ( s i n T - s i n 0  " 1 ;  = - . A  

Definite Integral by Substitution 

Given an integral h(x)dx and a new variable u = g(x): Lb 
1. Substitute d ~ / ~ ' ( x )  for dx and then try to express the integrand 

h(x)/gl(x) in terms of u. 
2. Change the endpoints a and b to g(a) and g(b), the corresponding 

values of u. 

Then 

l b h  (x) dx = Igy f (u) du7 
a )  

where f(u) = h(x)/(du/dx). Since h(x) = f(g(x))gl(x), this can be writ- 
ten as 

Example 4 Evaluate S5 x dx . 
I x4 + lox2 + 25 

Solution Seeing that the denominator can be written in terms of x2, we try u = x2, 
dx = du/(2x); u = 1 when x = 1 and u = 25 when x = 5. Thus 

X 25 
dx= - du i5 x4 + lox2 + 25 : 1 u2 + 1Ou + 25 

Now we notice that the denominator is (u + 5)2, SO we set v = u + 5, du = dv; 
u = 6 when u = 1, v = 30 when u = 25. Therefore 

If you see the substitution v = x2 + 5 right away, you can do the problem in 
one step instead of two. A 

Example 5 Find r/4(cos20 - sin20) dO. 

Solution It is not obvious what substitution is appropriate here, so a little trial and error 
is called for. If we remember the trigonometric identity cos2O = cos26 - sin26, 

Copyright 1985 Springer-Verlag.  All rights reserved.



356 Chapter 7 Basic Methods of Integration 

we can proceed easily: 

- sinu "I2- 1 - o - 1 -11, - 7 - 7  
(See Exercise 32 for another method.) A 

ex  dx. Example 6 Evaluate J' - 
0 l + e x  

Solution Let u = 1 + ex; du = exdx, dx = du/ex; u = 1 + e0 = 2 when x = 0 and 
u = 1 + e when x = 1. Thus 

Substitution does not always work. We can always make a substitution, but 
sometimes it leads nowhere. 

Example 7 What does the integral J2 -..L&- become if you substitute u = x2? 
0 l + x 4  

Solution If u = x2, du/dx = 2x and dx = du/2x, so 

We must solve u = x2 for x; since x > 0, we get x = &, so 

Unfortunately, we do not know how to evaluate the integral in u, so all we 
have done is to equate two unknown quantities. A 

As in Example 7, after a substitution, the integral Jf(u)du might still be 
something we do not know how to evaluate. In that case it may be necessary 
to make another substitution or use a completely different method. There is an 
infinite choice of substitutions available in any given situation. It takes 
practice to learn to choose one that works. 

In general, integration is a trial-and-error process that involves a certain 
amount of educated guessing. What is more, the antiderivatives of such 
innocent-looking functions as 

1 and 1 

J- JcGz 
cannot be expressed in any way as algebraic combinations and compositions 
of polynomials, trigonometric functions, or exponential functions. (The proof 
of a statement like this is not elementary; it belongs to a subject known as 
"differential algebra".) Despite these difficulties, you can learn to integrate 
many functions, but the learning process is slower than for differentiation, and 
practice is more important than ever. 

Since integration is harder than differentiation, one often uses tables of 
integrals. A short table is available on the endpapers of this book, and 
extensive books of tables are on the market. (Two of the most popular are 
Burington's and the CRC tables, both of which contain a great deal of 
mathematical data in addition to the integrals.) Using these tables requires a 
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knowledge of the basic integration techniques, though, and that is why you 
still need to learn them. 

Example 8 Evaluate l3 d: using the tables of integrals. 
x r  

Solution We search the tables for a form similar to this and find number 49 with a = 1, 
b = 1. Thus 

Hence 

Exercises for Section 7.3 
Evaluate the definite integrals in Exercises 1-22. 

13. 11:;: cos2x sin x dx. 

14. ('I2 
csc5, 

"/4 cot5 ,+2coty+ 1 d ~ .  

16. J' -.!?- dx. 
0 x 3 + 1  

18. l;{2cot S do. 

19. F 2 s i n  x cos x dx. 

20. J;"/2[ln(sin x) + (x cot x)](sin xIx dx. 

21. J3 X' + - dx (simplify first). 
x 2 +  1 

dx . 
x2 

dx = n/4 (See Exer- 

cise 57, Section 7.1), compute each of the fol- 

lowing integrals: (a) 

(b) j" sin2(x - n/2) dx; (c) L"/'cos2(2x) dx. 
"/2 

24. (a) By combining the shifting and scaling rules, 
find a formula for Jf(ax + b)dx. 

(b) Find j3 dx [Hint: Factor the 
2 4x2 + 12x + 9 

denominator.] 
25. What happens in the integral 

if you make the substitution u = x3 + 3x2 + l? 

26. What becomes of the integral L'/'cos4xdx if 

you make the substitution u = cosx? 
Evaluate the integrals in Exercises 27-30 using the 
tables. 

27. J1 dx 28. J~ dx 
0 3x2 + 2x + 1 
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31. Given two functions f and g, define a function h 
by 

h(x) =dl f(x  - t)g(t) dt. 

Show that 

32. Give another solution to Example 5 by writing 
cos20 - sin20 = (cos 6' - sin 0)(cos 0 + sin 0) and 
using the substitution u = cos 0 + sin 8.  

33. Find the area under the graph of the function 
y = (x  + 1)/(x2 + 2x + 2)3/2 from x = 0 to 
x =  1. 

34. The curve x2/a2 + y2/b2 = 1, where a and b are 
positive, describes an ellipse (Fig. 7.3.1). Find the 

Figure 7.3.1. Find the area 
inside the ellipse. 

area of the region inside this ellipse. [Hint: Write 
half the area as an integral and then change 
variables in the integral so that it becomes the 
integral for the area inside a semicircle.] 

35. The curve y = x'l3,  1 < x < 8, is revolved about 
they axis to generate a surface of revolution of 
area s. In Chapter 10 we will prove that the area 

is given by s = 1 ' 2 7 r Y 3 J ~  dy. Evaluate this 

integral. 

*36. Let f(x) = (dt/t). Show, using substitution, LX 
and without using logarithms, that f(a) + f(b) 

, = f(ab) if a, b > 0. [Hint: Transform lab$ by 

a change of variables.] 

37. (a) Find ~'/'cos2x sinx dx by substituting u = 

cos x and changing the endpoints. 
*(b) Is the formula 

valid if a < b, yet g(a) > g(b)? Discuss. 

7.4 Integration by Parts 
Integrating the product rule leads to the method of integration by parts. 

The second of the two important new methods of integration is developed in 
this section. The method parallels that of substitution, with the chain rule 
replaced by the product rule. 

The product rule for derivatives asserts that 

(FG )'(x) = Fr(x)G(x) + F(x)Gr(x). 

Since F(x)G(x) is an antiderivative for Fr(x)G(x) + F(x)Gr(x), we can write 

Applying the sum rule and transposing one term leads to the formula 

If the integral on the right-hand side can be evaluated, it will have its own 
constant C, so it need not be repeated. We thus write 

JF(X)G~X) dx= F(X)G(X) - F ~ X ) G ( X )  dx, I (1) 
which is the formula for integration by parts. To apply formula (1) we need to 
break up a given integrand as a product F(x)G'(x), write down the right-hand 
side of formula (I), and hope that we can integrate Fr(x)G(x). Integrands 
involving trigonometric, logarithmic, and exponential functions are often good 
candidates for integration by parts, but practice is necessary to learn the best 
way to break up an integrand as a product. 
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Example 1 Evaluate x cos x dx. 

Solution If we remember that cosx is the derivative of sinx, we can write xcosx as 
F(x)Gf(x), where F(x) = x and G(x) = sinx. Applying formula (I), we have 

I x c o s x d x =  x s i n x  - 1.sinxdx = xsinx - sinxdx I I 
= x s i n x + c o s x +  C. 

Checking by differentiation, we have 

d - (xsinx + cosx) = xcosx + sinx - sinx = xcosx, 
dx 

as required. 8, 

It is often convenient to write formula (1) using differential notation. Here we 
write u = F(x) and v = G(x). Then du/dx = Ff(x) and dv/dx = G'(x). 
Treating the derivatives as if they were quotients of "differentials" du, dv, and 
dx, we have du = Ff(x)dx and dv = Gf(x)dx. Substituting these into formula 
(1) gives 

(see Fig. 7.4.1). 

Figure 7.4.1. You may 
move "d" from v to u if 
you switch the sign and add 
uv . 

Integration by Parts 
To evaluate h (x) dx by parts: 

1. Write h(x) as a product F(x)Gf(x), where the antiderivative G(x) of 
Gf(x) is known. 

2. Take the derivative Ff(x) of F(x). 
3. Use the formula 

IF(X)G~(X) dx= F(X)G(X) - FI(X)G(X) dx, 

i.e., with u = F(x) and v = G(x), 
I 

~ u d v = u v -  I vdu. 

When you use integration by parts, to integrate a function h write h(x) as a 
product F(x)G'(x) = udv/dx; the factor Gf(x) is a function whose antideriv- 
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ative v = G(x) can be found. With a good choice of u = F(x) and v = G(x), 
the integral JF'(x)G(x)dx = Jvdu becomes simpler than the original problem 
Ju dv. The ability to make good choices of u and v comes with practice. A last 
reminder-don't forget the minus sign. 

Example 2 Find (a) xsinxdx and (b) Ix2sinxdx. I 
Solution (a) (Using formula (1)) Let F(x) = x and G'(x) = sinx. Integrating G'(x) gives 

G(x) = -cosx; also, F'(x) = 1, so 

I x s i n x d x =  -xcosx - - cosxdx I 
= -xcosx + sinx + C. 

(b) (Using formula (2)) Let u = x2, dv = sinxdx. To apply formula (2) for 
integration by parts, we need to know v. But v = Jdv = Jsinxdx = 
- cos x. (We leave out the arbitrary constant here and will put it in at the end 
of the problem.) 

Now 

Ix2sinxdx= uv- vdu I 

= -x2cosx + 2 xcosxdx. I 
Using the result of Example 1, we obtain 

-x2cosx + 2(xsinx + cosx) + C = -x2cosx + 2xsinx + 2cosx + C. 

Check this result by differentiating-it is nice to see all the cancellation. A 

Integration by parts is also commonly used in integrals involving ex and lnx. 

Example 3 (a) Find lnx dx using integration by parts. (b) Find xex dx. I I 
Solution (a) Here, let u = lnx, dv = 1 dx. Then du = dx/x and v = J l  dx = x. Apply- 

ing the formula for integration by parts, we have 

= xlnx - J ldx=  xlnx - x + C. 

(Compare Example 7, Section 7.1 .) 
(b) Let u = x and v = ex, so dv = exdx. Thus, using integration by parts, 

Next we consider an example involving both ex and sinx. 

Example 4 Apply integration by parts twice to find exsinx dx. I 
Solution Let u = sinx and v = ex, so dv = exdx and 

l exs inxdx= exsinx - excosx dx. I 
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Repeating the integration by parts, 

~ e x c o s x d x = e x c o s x +  I exsinxdx, (4) 

where, this time, u = cosx and u = ex. Substituting formula (4) into (3), we get 

The unknown integral Jexsinx dx appears twice in this equation. Writing "I" 
for this integral, we have 

I = eXsinx - eXcosx - I ,  
and solving for I gives 

I =3ex(sinx -cosx), 

J exsinxdx= tex(sinx - cosx) + C .  

Some students like to remember this as "the I method." A 

Some special purely algebraic expressions can also be handled by a clever 
use of integration by parts, as in the next example. 

Example 5 Find x7(x4 + 1)2/3 dx. I 
Solution By taking x3 out of x7 and grouping it with (x4 + 1)2/3, we get an expression 

which we can integrate. Specifically, we set du = 4x3(x4 + leaving 
u = x4/4. Using integration by substitution, we get u = 3(x4 + 1)5/3, and 
differentiating, we get du = x3dx. Hence 

Substituting w = (x4 + 1) gives 

hence 

I X ' ( X ~  + +1)Y3 dx = &x4(x4 + 1)''' - 6 (x4 + I)''~ + C 

Using integration by parts and then the fundamental theorem of calculus, we 
can calculate definite integrals. 

Example 6 Find I::;2x sin x dx . 

Solution From Example 2 (a) we have Jx sin x dx = - x cos x + sin x + C, so 

I::;2 xsinxdx = (-xcosx + sinx) 

r " ) - [ fcos ( -  ;)+sin(- f ) ]  = (- f cosT + sin- 2 
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Example 7 Find (a) Iln2exln(ex + 1)dx and (b) lesin(lnx)dx. 
0 1 

Solution (a) Notice that ex is the derivative of (ex + I), so we first make the substitu- 
tion t = ex + 1. Then 

3 
L l n  2exln(ex + 1) dx = In t dt, 

and, from Example 3, Jln t dt = t In t - t + C .  Therefore 

= 31n3 - 21n2 - 1~0 .9095 .  
(b) Again we begin with a substitution. Let u = lnx, so that x = e" and du = 

(1 /x) dx. Then Jsin(1n x) dx = J(sin u)eU du, which was evaluated in Example 
4. Hence 

1 
I 

iesin(ln x) dx = e "sin u du = - e " (sin u - cos u) i I 2 lo 

= P (sin 1 - cos 1 + - 
2 e ' ). A 

Example 8 Find the area under the nth bend of y = x sinx in the first quadrant (see Fig. 
7.4.2). 

Solution The nth bend occurs between x = (2n - 2)n and (2n - 1)n. (Check n = 1 and 
n = 2 with the figure.) The area under this bend can be evaluated using 
integration by parts [Example 2(a)]: 

!' 4 

Reg~on ~tt ider (2n - 1)s (2n - I)T 

second bend xsinxdx = -xcosx + sinx 
(2n - 2 ) ~  

= -(2n - l)wcos[(2n - l)n] + sin[(2n - l)n] 

+ (2n - 2)m cos(2n - 2)n - sin(2n - 2)a 

= -(2n - l)n(- 1) + 0 + (2n - 2)n(1) - 0 

= (2n - 1)n + (2n - 2)n = (4n - 3)n. 

Figure 7.4.2. W h a t  is the Thus the areas under successive bends are n, 5n, 9n, 13n, and so forth. A 
area under the nth bend? 

We shall now use integration by parts to obtain a formula for the integral of 
the inverse of a function. 

Iff is a differentiable function, we write f(x) = 1 f(x); then 

Introducing y = f(x) as a new variable, with dx = dy/f'(x), we get 

Assuming that f has an inverse function g, we have x = g(y), and equation (6) 
becomes 
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Thus we can integrate f if we know how to integrate its inverse. In the 
notation y = f(x), equation (7) becomes 

Notice that equation (8) looks just like the formula for integration by parts, 
but we are now considering x and y as functions of one another rather than as 
two functions of a third variable. 

Example 9 Use equation (8) to compute i l n x  dx. 

Solution Viewing y = lnx as the inverse function of x = eY, equation (8) reads 

I l n x d x = x y -  eYdy=xlnx-eY+ C = x l n x - x +  C, I 
which is the same result (and essentially the same method) as in Example 3. A 

We can also state our result in terms of antiderivatives. If G(y) is an 
antiderivative for g(y), then 

F(x) = xf(x) - G(f(x)) (9) 
is an antiderivative for f. (This can be checked by differentiation.) 

Example 10 (a) Find an antiderivative for c o s ' x .  (b) Find Icsc- '& dx. 

Solution (a) If f(x) = cos-'x, then g(y) = cosy and G(y) = sin y. By formula (9), 

F(x) = x cos-'x - sin(cos-'x); 

di7 But sin(cos- 'x) = Js (Fig. 7.4.3), so 
Y 

Figure 7.4.3. 
F(X) = x cos-'x - J K F  - 

sin(cos- ' x )  = Ji'G? is an antiderivative for cos-'x. This may be checked by differentiation. 

(b) If y = c s c - ' 6 ,  we have csc y = 6 and x = csc9. Then 

Figure 7.4.4. 0 = csc- '6. = x CSC-'6 + + C (see Fig. 7.4.4). A 

Example 11 (a) Find .dx. (b) Find xcos-'xdx, 0 < x < 1. I 
Solution (a) If y = d& + 1 , then y2 =& + 1, 6 = y2 - 1, and x = (y2 - 1l2. Thus 

we have 
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(b) Integrating by parts, 

x s x  c o s  'x dx = - cos- 'x + x 2  
2 

dx. 

The last integral may be evaluated by letting x = cosu: 

x 2  d x =  - ~ d s i n u d u =  - 
sin u 

2 - cos2u + 1 But cos u - , SO 

1 j c o h d u =  Lsin2u + + C = s i n u c o s u  + + C. 
4 2 2 2 

Thus, 
2 1 cos - Ix x cos- 'x dx = i!- cos- 'x - - sin(cose 'x)x - --- 

2 4 4 t C  

Exercises for Section 7.4 
Evaluate the indefinite integrals in Exercises 1-26 using 
integration by parts. 

1. r (x  + 1)cos x dx 2. ( (x - 2)sin x dx 

2 1. j tan x ln(cos x) dx 22. e2xe(e") dx 

23. jcos-'(2x)dx 
I 

24. Is in- 'x  dx 

30. What would have happened in Example 5, if in 
the integral Jexcosx dx obtained in the first inte- 
gral by parts, you had taken u = ex and v = sinx 
and integrated by parts a second time? 

Evaluate the definite integrals in Exercises 31-46. 

3 1. LT/48  + 5 @)(sin 5 8 )  dB 

32. 1 2 x  lnx dx 

36. r I 2 s i n  3x cos 2x dx 

J - 7 l  

27. Find /sin x cos x dx by using integration by 
42. c 2 s i n f i  dx. [Hint: Change variables first.] 

parts with u = sin x and dv = cos x dx. Compare 
the result with substituting u = sinx. 43. 12x' /3(x2/3 + ~ ) ~ / ~ d x .  

28. Compute [fi dx by the rule for inverse func- 
J 

44. 1 x' 
tions. Compare with the result given by the J ,x2 + 1) 

I/i dx. 
power rule. 

29. What happens in Example 2(a) if you choose 
F'(x) = x and G(x) = sin x? 

45. J'/2'sin-1~x dx. 
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47. Show that 

48. Find L34f(x)dx ,  where f is the inverse function 

of g ( y )  = y 5  +Y.  
49. Find L2wxsinaxdx as a function of  a. What 

happens to this integral as a becomes larger and 
larger? Can you explain why? 

50. (a) Integrating by parts twice (see Example 4), 
find Jsin ax cos bx dx, where a2 f: b2. 

(b)  Using the formula sin 2x = 2 sin x cos x ,  find 
Jsin ax cos bx dx when a = -t b. 

(c) Let g(a) = ( 4 / ~ ) J g / ~ s i n  x sin ax dx. Find a 
formula for g(a). (The formula will have to 
distinguish the cases a2 f: 1 and a2 = 1.) 

( d )  Evaluate g (a )  for a = 0.9, 0.99, 0.999, 
0.9999, and so on. Compare the results with 
g(1). Also try a = 1 . l ,  1.01, 1.001, and so on. 
What do you guess is true about the func- 
tion g at a = l? 

51. (a) Integrating by parts twice, show that 

52. (a)  Prove the following reduction formula: 
I x n e x d x  = xnex - n I xn-I e d x .  " 

(b)  Evaluate L3x3ex dx 

53. (a) Prove the following reduction formula: 

lcosnx dx= cosn- I X  sin x + - n - 1 J C O S ~ - ~ X  dx. 
n n 

(b)  Use part (a) to show that 

and 

54.. The mass density o f  a beam is p = x2e-" 
kilograms per centimeter. The beam is 200 centi- 
meters long, so its mass is M = Jimpdx kilo- 
grams. Find the value o f  M. 

55. The volume o f  the solid formed by rotation of  
the plane region enclosed by y = 0, y = sinx, 
x = 0, x = m, around they axis, will be shown in 

Chapter 9 to be given by V = 2mx sinx dx. 6" 
Find V. 

56. The Fourier series analysis o f  the sawtooth wave 
requires the computation of  the integral 

b =-  w2A t sin(mwt) dt, 
2m2 I ~ ~ ~ W  

where m is an integer and w and A are nonzero 
constants. Compute it. 

57. The current i in an underdamped RLC circuit is 
given by 

The constants are E = constant emf,  switched on 
at t = 0, C = capacitance in farads, R = re- 
sistance in ohms, L = inductance in henrys, a = 

R/2L ,  w = (1/2L)(4L/C - R ~ ) ' / ~ .  
(a) The charge Q in coulombs is given by 

dQ/dt = i,  and Q(0) = 0. Find an integral 
formula for Q, using the fundamental theo- 
rem o f  calculus. 

(b)  Determine Q by integration. 
58. A critically damped RLC circuit with a steady 

emf of  E volts has current i = ~ C a ~ t e - " ' ,  where 
a = R/2L .  The constants R, L,  C are in ohms, 
henrys, and farads, respectively. The charge Q in 

coulombs is given by Q ( T )  = l T i d t .  Find it 
0 

explicitly, using integration by parts. 
*59. Draw a figure to illustrate the formula for inte- 

gration o f  inverse functions: 

l b f ( x ) d x =  bf(b) - af(a)  - g ' ) g ( y )  dy, 

where 0 < a < b, 0 < f(a) < f(b), f is increasing 
on [a, b],  and g is the inverse function o f f .  

*60. (a) Suppose that +'(x) > 0 for all x in [O, a) 
and +(0) = 0. Show that i f  a > 0, b > 0, and 
b is in the domain of  +- ', then Young's 
inequality holds: 

where +- '  is the inverse function to +. 
[Hint: Express If;+- dy in terms o f  an 
integral o f  + by using the formula for inte- 
grating an inverse function. Consider sepa- 
rately the cases +(a) g b and +(a) > b. For 
the latter, prove the inequality 1;- t(,)+(x) dx 
> I;-yb)bdx = b[a - +-'(b)].] 

(b) Prove (a) by a geometric argument based on 
Exercise 59. 

(c) Using the result of  part (a), show that i f  
a,b > 0 and p,q > 1 ,  with l / p  + l / q  = 1, 
then Minkowski's inequality holds: 

ap b4 a b g - + - .  
P 9 

*61. I f f  is a function on [O, 2711, the numbers 

are called the Fourier coefficients o f  f ( n  = 0, 
+- 1, k 2 ,  . . . ). Find the Fourier coefficients o f :  
( a )  f ( x >  = 1 ;  ( b )  f ( x )  = x ;  ( c )  f ( x )  = x 2 ;  
(d)  f ( x )  = sin 2x + sin 3x + cos 4x. 

k62. Following Example 5 ,  find a general formula for 
J x ~ ~ - ' ( x "  + l ) m d ~ ,  where n and m are rational 
numbers with n =+ 0, m f: - 1 ,  - 2. 

Copyright 1985 Springer-Verlag.  All rights reserved.



366 Chapter 7 Basic Methods of Integration 

Review Exercises for Chapter 7 
Evaluate the integrals in Exercises 1-46. 32. ( x 2 b +  dx 

1. ((x + sinx)dx 

10. 1 tan x sec2x dx 

15. ( x2e(4x3) dx 

16. ((1 + 3x2)exp(x + x3)dx 

17. (2 cos22x sin 2x dx 

18. j-3 sin 3x cos 3x dx 

19. (x  t a n  Ix dx 

33. (x cos 3x dx 

34. ( t cos 2t dt 

35. (3x cos2xdx 

36. (sin 2x cos x dx 

37. (xVX2) dx 

38. ( ~ l e ( ' ~ )  dx 

39. f x(ln x ) ~  dx 
J 

40. f (ln x ) ~  dx 

J 

42. ( dx (Complete the square.) 
x2 + 2x + 3 

43. ([cos x]ln(sin x) dx 
- 

45. (tan-'xdx 

46. (cos1(12x) dx 

Evaluate the definite integrals in Exercises 47-58. 

49. Y 5 x  sin sx dx 

50. g l 4 x  cos 2x dx 

51. 12x-2cos(l/x)dx 

52. ~ /2~2cos(x3)s in (x3)  dx 

53. I,"/'. tan-'. dx 

54. J;1n(n/4)extan ex dx 

55. la+' 1 dt (substitute x = e )  
a + ]  Jt-a 

56. L1 dx 

57. L 1 x d Z T 3  dx 

du 

In Exercises 59-66, sketch the region under the graph 
the given function on the given interval and find its 
area. 

59. 40 - x3 on [O,3] 
60. sin x + 2x on[O, 4?r] 
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61. 3 x / / m  on [0,4] 
62. xsin-'x + 2 on [0, I] 
63. sinx on [0, n/4] 
64. sin 2x on [0, ~ / 2 ]  
65. 1 / x  on [2,4] 
66. xe-2X on [0, 11 

67. Let Rn be the region bounded by the x axis, the 
line x = 1, and the curve y = xn. The area of Rn 
is what fraction of the area of the triangle R,? 

68. Find the area under the graph of f(x) = 

x / / x T  from x = 0 to x = 2. 
69. Find the area between the graphs of y = - x3 - 

2 x - 6  and y = e x + c o s x  from x = O  to x =  
a/2. 

70. Find the area above the nth bend of y = xsinx 
which liesbelow the x axis. (See Fig. 7.4.2). 

71. Water is flowing into a tank with a rate of 
10(t2 + sint) liters per minute after time t. Calcu- 
late: (a) the number of liters stored after 30 
minutes, starting at t = 0; (b) the average flow 
rate in liters per minute over this 30-minute 
interval. 

72. The velocity of a train fluctuates according to the 
formula v = (100 + e-3'sin 27rt) kilometers per 
hour. How far does the train travel: (a) between 
t = 0 and t = l?; (b) between t = 100 and t 
= 101? 

73. Evaluate sin(ax/2)cos(7rx)dx by integrating I 
by parts two different ways and comparing the 
results. 

74. Do Exercise 73 using the product formulas for 
sine and cosine. 

75. Evaluate I \ / ( l  + x)/(l  - x) dx. [Hint: Multi- 

ply numerator and denominator by -.] 
76. Substitute x = sin u to evaluate 

and 

77. Evaluate: 

(b) J36 dx , (use x = 3 tanu). 
6 x 2 / m  

78. (a) Prove the following reduction formula: 

if n > 2, by integration by parts, with u 
= sinn- 'x, v = - cos x. 

/ 

(b) Evaluate isin2x dx by using this formula. 

(c) Evaluate Isin4x dx. 

79. Find [xnlnx dx using lnx = (l/(n + l))lnxn+ ' 
J 

and the substitution u = x n C  I .  

80. (a) Show that: 

I x m  (ln x)" dx 

(b) Evaluate J2x2(ln x)' dx. 

81. The charge Q in coulombs for an RC circuit with 
sinusoidal switching satisfies the equation 

The solution is 

(a) Find Q explicitly by means of integration by 
parts. 

H(b) Verify that Q(l.O1) = 0.548 coulomb. [Hint: 
Be sure to use radians throughout the calcu- 
lation.] 

82. What happens if Jf(x) dx is integrated by parts 
with u = f(x), v = x? 

*83. Arthur Perverse believes that the product rule for 
integrals ought to be that Jf(x)g(x)dx equals 
f(x)Jg(x) dx + g(x)J f(x) dx. We wish to show 
him that this is not a good rule. 
(a) Show that if the functions f(x) = x m  and 

g(x) = x n  satisfy Perverse's rule, then for 
fixed n the number rn must satisfy a certain 
quadratic equation (assume n, m > 0). 

(b) Show that the quadratic equation of part (a) 
does not have any real roots for any n > 0. 

(c) Are there any pairs of functions, f and g, 
which satisfy Perverse's rule? (Don't count 
the case where one function is zero.) 

*84. ~ e r i v e  an integration formula obtained by read- 
ing the quotient rule for derivatives backwards. 

*85. Find xeaxcos(bx) dx. I 
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Chapter 8 

Differentia 
Equations 

A function may be determined by a differential equation together with initial 
conditions. 

In the first two sections of this chapter, we study two of the simplest and most 
important differential equations, which describe oscillations, growth, and 
decay. A variation of these equations leads to the hyperbolic functions, which 
are important for integration and other applications. To end the chapter, we 
study two general classes of differential equations whose solutions can be 
expressed in terms of integrals. These equations, called separable and linear 
equations, occur in a number of interesting geometrical and physical exam- 
ples. We shall continue our study of differential equations in Chapter 12 after 
we have learned more calculus. 

The solution of the equation for simple harmonic oscillations may be expressed in 
terms of trigonometric functions. 

A common problem in physics is to determine the motion of a particle in a 
given force field. For a particle moving on a line, the force field is given by 
specifying the force F as a function of the position x and time t .  The problem 
is to write x as a function of the time t so that the equation 

d2x F = m - (Force = Mass X Acceleration) 
dt2 (1) 

is satisfied, where m is the mass of the particle. Equation (1) is called Newton's 
second law of motion.' 

If the dependence of F on x and t is given, equation (1) becomes a 
differential equation in x-that is, an equation involving x and its derivatives 
with respect to t .  It is called second-order since the second derivative of x 
appears. (If the second derivative of x were replaced by the first derivative, we 
would obtain a first-order differential equation-these are studied in the 
following sections). A solution of equation (1) is a function x = f ( t )  which 
satisfies equation (1) for all t when f ( t )  is substituted for x .  

' Newton always expressed his laws of motion in words. The first one to formulate Newton's laws 
carefully as differential equations was L. Euler around 1750. (See C. Truesdell, Essays on the 
History of Mechanics, Springer-Verlag, 1968.) In what follows we shall not be concerned with 
specific units of measure for force--often it is measured in newtons (1 newton = 1 kilogram-meter 
per second2). Later, in Section 9.5, we shall pay a little more attention to units. 
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370 Chapter 8 Differential Equations 

For example, if the force is a constant Fo and we rewrite equation (1) as 

we can use our knowledge of antiderivatives to conclude that 

and 

where C, and C2 are constants. We see that the position of a particle moving 
in a constant force field is a quadratic function of time (or a linear function, if 
the force is zero). Such a situation occurs for vertical motion under the force 
of gravity near the earth's surface. More generally, if the force is a given 
function of t, independent of x, we can find the position as a function of time 
by integrating twice and using the initial position and velocity to determine 
the constants of integration. 

In many problems of physical interest, though, the force is given as a 
function of position rather than time. One says that there is a (time- 
independent) forcefield, and that the particle feels the force given by the value 
of the field at the point where the particle happens to be.2 For instance, if x is 
the downward displacement from equilibrium of a weight on a spring, then 
Hookeys law asserts that 

F=  -kx, (2) 

where k is a positive constant called the spring constant. (See Fig. 8.1.1 .) This 
law, discovered experimentally, is quite accurate if x is not too large. There is 

Downward 
force 
( F >  0 )  

Figure 8.1.1. The force on a 
weight on a spring is Gravity 

proportional to the stronger 
than 

displacement from spring 

equilibrium. 

Equi l ib r i~~ni  

No force 
( F = O )  

Gravity 
balances 
spring 

X 

Extension 
(.u > 0 )  

Upward 
force 
( F  < 0) 

I 
Gravity weaker than spring 

a minus sign in the formula for F because the force, being directed toward the 
equilibrium, has the opposite sign to x. Substituting formula (2) into Newton's 
law (1) gives 

d2x - k x = m -  or d2x - k 7 - -(--)X. 
dt2 dt 

It is convenient to write the ratio k/m as u2, where o = Jk/m is a new 
constant. This substitution gives us the spring equation: 

An example of a physical problem in which F depends on both x and t is the motion of a 
charged particle in a time-varying electric or magnetic field-see Exercise 13, Section 14.7. 
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Since x is an unknown function of t, we cannot find dx/dt by integrating the 
right-hand side. (In particular, dx/dt is not - $w2x2 + C,  since it is t rather 
than x which is the independent variable.) Instead, we shall begin by using 
trial and error. 

A good first guess, guided by the observation that weights on springs bob 
up and down, is 

x = sin t. 
Differentiating twice with respect to t, we get 

The factor w2 is missing, so we may be tempted to try x = w2sin t. In this case, 
we get 

which is again - x. To bring out a new factor when we differentiate, we must 
take advantage of the chain rule. If we set x = sin wt, then 

dx d(wt) - = cos wt - = (,J cos wt 
dt dt 

and 

which is just what we wanted. Looking back at our wrong guesses suggests 
that it would not hurt to put a constant factor in front, so that 

x = B sin a t  
is also a solution for any B. Finally, we note that cos wt is another solution. In 
fact, if A and B are any two constants, then 

x = Acoswt + Bsinwt (4) 
is a solution of the spring equation (3), as you may verify by differentiating (4) 
twice. We say that the solution (4) is a superposition of the two solutions 
A sin a t  and B cos ot. 

Example 1 Let x = f(t) = A coswt + Bsinwt. Show that x is periodic with period 2m/w; 
that is, f(t + 2m/w) = f(t). 

Solution Substitute t + 2m/w for t: 

= A cos[ot + 2 ~ ]  + B sin[wt + 2m] 

= Acoswt + Bsinwt = f(t). 

Here we used the fact that the sine and cosine functions are themselves 
periodic with period 2m. A 

The constants A and B are similar to the constants which arise when 
antiderivatives are taken. For any value of A and B, we have a solution. If we 
assign particular values to A and B, we get a particular solution. The choice of 
particular values of A and B is often determined by specifying initial condi- 
tions. 
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Example 2 Find a solution of the spring equation d2x/dt2 = -w2x for which x = 1 and 
dx/dt = 1 when t = 0. 

Solution In the solution x = A cos ot + B sinwt, we have to find A and B. Now x = A 
when t = 0, so A = 1. Also dx/dt = oB cos wt - wA sin a t  = wB when t = 0. 
To make dx/dt = 1, we choose B = l/w, and so the required solution is 
x = cos wt + (l/o) sin at .  A 

In general, if we are given the initial conditions that x = xo and dx/dt = vo 
when t = 0, then 

00 x = xocos wt + - sin ot 
w (5) 

is the unique function of the form (4) which satisfies these conditions. 

Example 3 Solve for x: d2x/dt2 = - X, x = 0 and dx/dt = 1 when t = 0. 

Solution Here xo = 0, v, = 1, and o = 1, so x = xocoswt + (vo/w)sin wt = sint. A 

Physicists expect that the motion of a particle in a force field is completely 
determined once the initial values of position and velocity are specified. Our 
solution of the spring equation will meet the physicists' requirements if we can 
show that every solution of the spring equation (3) is of the form (4). We turn 
to this task next. 

In deriving formula (5) we saw that there are enough solutions of the 
form (4) so that x and dx/dt can be specified arbitrarily at t = 0. Thus if 
x = f(t) is any solution of equation (3), then the function g(t) = f(0)coswt + 
[f'(O)/w]sinwt is a solution of the special form (4) with the same initial 
conditions as f: g(0) = f(0) and g'(0) = f'(0). We will now show that f(t) 
= g(t) for all t by using the following fact: if h(t) is any solution of equation 
(3), then the quantity E = t {[h'(t)12 + [wh(t)12) is constant over time. This 
expression is called the energy of the solution h. To see that E is constant over 
time, we differentiate using the chain rule: 

This equals zero since h" + w2h = 0; thus E is constant over time. Now iff 
and g are solutions of equation (3) with f(0) = g(0) and f'(0) = g'(O), then 
h(t) = f(t) - g(t) is also a solution with h(0) = 0 and h'(0) = 0. Thus the 
energy E = 3 {[h'(t)12 + [wh(t)l2) is constant; but it vanishes at t = 0, so it is 
identically zero. Thus, since two non-negative numbers which add to zero 
must both be zero: h'(t) = 0 and wh(t) = 0. In particular, h(t) = 0, and so 
f(t) = g(t) as required. 

The solution (4) of the spring equation can also be expressed in the form 

X = a cos(wt - 0), 

where a and O are constants. In fact, the addition formula for cosine gives 

acos(wt - 0)  = acoswtcosO + asinwtsintl. (7) 
This will be equal to A cos wt + B sin ot if 

acosO=A and asinO= B. 
Thus a and O must be the polar coordinates of the point whose cartesian 
coordinates are (A, B), and so we can always find such an a and O with a > 0. 
The form (7) is convenient for plotting, as shown in Fig. 8.1.2. 

In Fig. 8.1.2 notice that the solution is a cosine curve with amplitude a 
which is shifted by the phase shift O/w. The number w is called the angular 
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Figure 8.1.2. The graph of 
x = a cos(wt - 8). 

frequency, since it is the time rate of change of the "angle" wt - 8 at which the 
cosine is evaluated. The number of oscillations per unit time is the frequency 
w/2n (= l/period). 

The motion described by the solutions of the spring equation is called 
simple harmonic motion. It arises whenever a system is subject to a restoring 
force proportional to its displacement from equilibrium. Such oscillatory 
systems occur in physics, biology, electronics, and chemistry. 

Every solution of the spring equation 

- - - 02x has the form x = A cos wt + B sin at, 

where A and B are constants. 
The solution can also be written 

= (Y COS(O~ - e ), 
where (a,@) are the polar coordinates of (A,B). [This function is 
graphed in Fig. 8.1.2.1 

If the values of x and dx/dt are specified to be x, and v, at t = 0, 
then the unique solution is 

x = x,cos wt + (vo/w)sin wt. 

Example 4 Sketch the graph of the solution of d2x/dt2 + 9x = 0 satisfying x = 1 and 
dx/dt = 6 when t = 0. 

Solution Using (5) with w = 3, x, = 1, and v, = 6, we have 

x = cos(3t) + 2 sin(3 t) = a cos(3 t - 8). 

Since (A, B) = (1,2), and (a ,  8) are its polar coordinates, 

and 

8 = tan- '2 w 1.1 radians (or 63"), 

so 8/w w 0.37. The period is r = 2n/w w 2.1. Thus we can plot the graph as 
shown in Fig. 8.1.3. ,#A 

Copyright 1985 Springer-Verlag.  All rights reserved.



374 Chapter 8 Differential Equations 

As usual, the independent variable need not always be called t, nor does 
the dependent variable need to be called x. 

Example 5 (a) Solve for y: d?/dx2 + 9y = 0, y = 1 and dyldx = - 1 when x = 0. 
(b) Sketch the graph of y as a function of x. 

Solution (a) Here yo = 1, vo = - 1, and o = fi = 3 (using x in place of t and y in place 
of x), so 

00 y = yocoswx + - sinwx = cos3x - fsin3x. 
w 

(b) The polar coordinates of (1, -3 )  are given by a = Jm = J10/3 % 

1.05 and 8 = tanp'(- f )  = -0.32 (or - 18"). Hence y = acos(wx - 8) be- 
comes y = 1.05 cos(3x + 0.32), which is sketched in Fig. 8.1.4. Here 8/w = 
-0.1 and 2r/w = 2.1. A 

Figure 8.1.4. The graph of 
y = (l.O5)cos(3x + 0.32). 

A Remark on Notation. Up until now we have distinguished variables, which 
are mathematical objects that represent "quantities," and functions, which 
represent relations between quantities. Thus, when y = f(x), we have written 
f'(x) and dy/dx but not y', df/dx, or y(x). It is common in mathematical 
writing to use the same symbol to denote a function and its dependent 
variable; thus one sometimes writes y = y(x) to indicate that y is a function of 
x and then writes $9' = dyldx," "(3) is the value of y when x = 3," and so 
on. Beginning with the next example, we will occasionally drop our scruples in 
distinguishing functions from variables and will use this abbreviated notation. 

Example 6 Let M be a weight with mass 1 gram on a spring with spring constant 2 .  Let 
the weight be initially extended by a distance of 1 centimeter moving at a 
velocity of 2 centimeters per second. 

(a) How fast is M moving at t = 3? 
(b) What is M's acceleration at t = 4? 
(c) What is M's maximum displacement from the rest position? When does it 

occur? 
(d) Sketch a graph of the solution. 
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Solution Let x - x(t) denote the position of M at time t. We use the spring equation 

(3) with w = 6, where k is the spring constant and m is the mass of M. 
Since k = $ and m = 1, w is J3/2. At t = 0, M is extended by a distance of 1 
centimeter and moving at a velocity of 2 centimeters per second, so x, = 1 and 
v, = 2. 

Now we have all the information we need to solve the spring equation. 
Applying formula (5) gives 

(a) xl(t) = - J3/2sinJ3/2 t + 2 c o s m  t. Substituting t = 3 gives 

x1(3) = - sin 3 \/3/2 + 2 cos 3 J3/2 m - 1.1 centimeters per second. 

(Negative velocity represents upward motion.) 

(b) x"(t) = - dt ( - i t + c o t ) =  i c o s G t - 6 s i n f i t  

and thus the acceleration at t = 4 is 

x"(4) = - 1 ~ 0 ~ 2 6  - 6 s i n 2 6  m 2.13 centimeters per second2 

(c) The simplest way to find the maximum displacement is to use the 
"phase-amplitude" form (7). The maximum displacement is the amplitude 

a =dm, where A and B are the coefficients of sin and cos in the 
solution. Here, A = 1 and B = 2 / f i ,  so a 2  = 1 + 4/(3/2) = 1 + 8/3 
= 11/3, so a =J11/3 w 1.91 centimeters, which is a little less than twice 
the initial displacement. 

(d) To sketch a graph we also need the phase shift. Now 8 = tan-'(B/A), 
which is in the first quadrant since A and B are positive. Thus 8 
= t a n - ' ( 2 / m ) m  1.02, and so the maximum point on the graph (see 
Fig. 8.1.2) occurs at B/w = 1.02/J3/2 m 0.83. The period is 2v/w m 5.13. 
The graph is shown in Fig. 8.1.5. A 

Figure 8.1.5. The graph of 

x ( t )  = cos& t + & s i n 6  t  

= 1.91 c o s ( 6  t  - 1.02). 

Supplement to Section 8.1 : 
Linearized Oscillations 

The spring equation can be applied to determine the approximate motion of 
any system subject to a restoring force, even if the force is not linear in the 
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displacement. Such forces occur in more realistic models for springs and in 
equations for electric circuits. Suppose that we wish to solve the equation of 
motion 

where the force function f(x) satisfies the conditions: (i) f(x,) = 0; and (ii) 
f'(x,) < 0, for some position x,. The point x, is an equilibrium position since 
the constant function x(t) = x, satisfies the equation of motion, by condition 
(i). By condition (ii), the force is positive when x is near x, and x < x,, while 
the force is negative when x is near x, and x > x,. Thus the particle is being 
pushed back toward x, whenever it is near that point, just as with the spring in 
Figure 8.1.1. 

Rather than trying to solve equation (8) directly, we shall replace f(x) by 
its linear approximation f(x,) + f'(xo)(x - x,) at x,. Since f(xo) = 0, the 
equation (8) becomes 

which is called the linearization of equation (8) at x,. If we write k for the 
positive number - f'(x,) and y = x - x, for the displacement from equilib- 
rium, then we get 

which is precisely the spring equation. 
We thus conclude that, to the degree that the linear approximation of the 

force is valid, the particle oscillates around the equilibrium point x, with 

period 2n/ I/-. It can be shown that the particle subject to the 

exact force law (8) also oscillates around x,, but with a period which depends 
upon the amplitude of the oscillations. As the amplitude approaches zero, the 
period approaches 2n/ I/*-, which is the period for the linearized 
equation. 

Here is an application of these ideas: 
By decomposing the gravitational force on a pendulum of mass m and 

length I into components parallel and perpendicular to the pendulum's axis, it 
can be shown that the displacement angle 9 of the pendulum from its 

/ equilibrium (vertical) position satisfies the differential equation m(d29/dt2) = 

- m(g/l)sin9, where g = 9.8 meters per second2 is the gravitational constant. 

,g (See Fig. 8.1.6). The force function is f(9) = - (mg/l)sin 9. Since f(0) = 0, 
9 = 0 is an equilibrium point. Since f'(0) = - (mg/l)sinf(0) = - rng/l, the 
linearized equation is m d29/dt2 = - (mg/l)9. The period of oscillations for 

Figure 8.1.6. The forces the linearized equation is thus 2 n / { M  = 2 7 1 6 .  (See Review Exer- 
acting on a pendulum. cise 83 for information on the solution of the nonlinear equation.) 

A point x, satisfying the conditions above is called a stable equilibrium 
point. The word stable refers to the fact that motions which start near x, with 
small initial velocity stay near x , .~ If f(x,) = 0 but f'(x,) > 0, we have an 
unstable equilibrium point (see Section 8.3). 

We have only proved stability for the linearized equations. Using conservation of energy, one 
can show that the motion for the exact equations stays near xo as well. (See Exercise 33.) 
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Exercises for Section 8.1 
1. Show that f(t) = cos(3t) is periodic with period 

2a/3. 
2. Show that f(t) = 8 sin(nt) is periodic with period 

2. 
3. Show that f(t) = cos(6t) + sin(3t) is periodic with 

period 2a/3. 
4. Show that f(t) = 3 sin(st/2) + 8 cos(at) is pe- 

riodic with period 4. 
In Exercises 5-8, find the solution of the given equation 
with the prescribed values of x and x' = dx/dt at t = 0. 

5. x" + 9x = 0, x(0) = 1, x'(0) = -2. 
6. x" + 16x = 0, x(0) = - 1, ~ ' ( 0 )  = - 1. 
7. x" + 12x = 0, x(0) = 0, x'(0) = - 1. 
8. x" + 25x = 0, x(O)= 1, x'(O)= 0. 

In Exercises 9-12, sketch the graph of the given func- 
tion and find the period, amplitude, and phase shift. 

9. x = 3 cos(3t - I). 
10. x = 2 cos(5t - 2). 
11. x = 4cos(t + 1). 
12. x = 6cos(3t + 4). 

In Exercises 13-16, solve the given equation for x and 
sketch the graph. 

dx 13. d2x + 4x = 0; x = - 1 and - = 0 when t = 0. 
dt2 dt 
d2x dx 14. -- + 16x = 0, x = 1 and - = 0 when t = 0. 
dt2 dt 
d2x dx 15. - +25x=O, x = 5  and - = 5  when t = 0 .  
dt dt 
d2x dx 16. - + 25x = 0, x = 5 at t = 0, and - = 5 
dt2 dt 

when t = a/4. 

d;jl 17. Find the solution of - = - 4y for which y = 1 
dt2 

d~ and - = 3 when t = 0. 
dt --- 

18. Find y = f(x) if f" + 4f = 0 and f(0) = 0, f'(0) 
= -1. 

19. Suppose that f(x) satisfies f"  + 16f = 0 and f(0) 
= 2, f'(0) = 0. Sketch the graph y = f(x). 

20. Suppose that z = g(r) satisfies 9z" + z = 0 and 
z(0) = - 1, zl(0) = 0. Sketch the graph z = g(r). 

21. A mass of 1 kilogram is hanging from a spring. If 
x = 0 is the equilibrium position, it is given that 
x = 1 and dx/dt = 1 when t = 0. The weight is 
observed to oscillate with a frequency of twice a 
second. 
(a) What is the spring constant? 
(b) Sketch the graph of x as a function of t, 

indicating the amplitude of the motion on 
your drawing. 

22. An observer sees a weight of 5 grams on a spring 
undergoing the motion x(t) = 6.1 cos(2t - a/6). 
(a) What is the spring constant? 

(b) What is the force acting on the weight at 
t = O? At t = 2? 

23. What happens to the frequency of oscillations if 
three equal masses are hung from a spring where 
there was one mass before? 

24. Find a differential equation of the "spring" type 
satisfied by the function y(t) = 3 cos(t/4) - 
sin(t/4). 

*25. A "flabby" spring exerts a force f(x) = -3x + 
2x3 when it is displaced a distance x from its 
equilibrium state, x = 0. 
(a) Write the equation of motion for an object 

of mass 27, vibrating on this spring. 
(b) Write the linearized equation of motion at 

x, = 0. 
(c) Find the period of linearized oscillations. 

+26. (a) Find the equilibrium position of an object 
which satisfies the equation of motion 

(b) What is the frequency of linearized oscilla- 
tions? 

*27. An atom of mass m in a linear molecule is 
subjected to forces of attraction by its neighbors 
given by 

(a) Compute the equilibrium position. 
(b) Show that motion near this equilibrium is 

unstable. 
+28. The equation for a spring with friction is 

(spring equation with damping). 
(a) If S2 < 4km, check that a solution is 

x(t) = e -8 ' /2m(~  cos wt + B sin wt), 

where a2 = kym - S2/4m2 > 0. 
(b) Sketch the general appearance of the graph 

of the solution in (a) and define the "pe- 
riod" of oscillation. 

(c) If the force - kx is replaced by a function 
f(x) satisfying f(0) = 0, f'(0) < 0, find a for- 
mula for the frequency of damped linearized 
oscillations. 

*29. Suppose that x = f(t) satisfies the spring equa- 
tion. Let g(t) = at + b, where a and b are con- 
stants. Show that if the composite function f 0 g 
satisfies the spring equation (with the same a), 
then a = + 1. What about b? 

+30. (a) Suppose that f(t) is given and that y = g(t) 
satisfies d 5 / d t 2  + a? = f(t). Show that 
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x = y + A sin wt + B cos wt represents the 
general solution of d2x/dt2 + w2x = f; that 
is, x is a solution and any solution has this 
form. One calls y aparticular solution and x 
the general solution. 

(b) Solved2x/dt2+ w2x = k i f  x = 1 anddx/dt 
= - 1 when t = 0; k is a nonzero constant. 

(c) Solve d2x/dt2 + w2x = w2t i f  x = - 1 and 
dx/dt = 3when t = 0. 

Exercises 31 and 32 outline the complete proof of the 
following theorem using the "method of variation of  
constants": Let x = f ( t )  be a twice-differentiable func- 
tion of t such that (d2x /d t2 )  + w2x = 0. Then x 
= A cos ot + B sin wt for constants A and B. 

*3 1 .  Some preliminary calculations are done first. 
Write 

x = A (t)cos wt + B(t)sin wt. (9) 

It is possible to choose A ( t )  and B(t )  in many 
ways, since for each t either sinwt or cosot is 
nonzero. T o  determine A( t )  and B(t)  we add a 
second equation: 

- dX - - -UA (t)sin ot + U B ( ~ )  cos wt. (10) dt 

This equation is obtained by differentiating (9) 
pretending that A ( t )  and B(t )  are constants. 
Since this is what we are trying to prove, we 
should be very suspicious here of  circular rea- 
soning. But push on and see what happens. 
Show that 

dx/dt 
B ( t )  = x sin wt + - cos wt. 

w (1 1 )  

Similarly, show that 

dx/dt 
A ( t ) = x c o s w t -  - sin wt. 

w (12) 

*32. Use the calculations in Exercise 31 to give the 
proof of  the theorem, making sure to avoid 
circular reasoning. W e  are given x = f( t)  and w 
such that (d2x/dt2) + w2x = 0. Define A ( t )  
and B(t )  by equations ( 1  1 )  and (12). Show that 
A( t )  and B(t )  are in fact constants by differen- 
tiating ( 1 1 )  and (12) to show that A f ( t )  and 
B'(t) are identically zero. Then rewrite formu- 
las ( 1  1 )  and (12) as 

dx / dt 
B = x(t)sin wt + - cos at, 

w (13) 

and 

dx/dt 
A = x(t)coswt - - sin at. 

w (14) 

Use these formulas to show A cos ot + B sin wt 
= x ,  which proves the theorem. 

*33. Suppose that m(d2x/dt2) = f (x) ,  where f(xo) 
= 0 and f'(xo) < 0. Let V ( x )  be an antideriv- 
ative of - f. 
(a) Show that xo is a local minimum of  V. 
(b) Show that dE/dt = 0, where the energy E 

is given by E = f r n ( d ~ / d t ) ~  + V(x) .  
(c) Use conservation of  energy from (b) to 

show that i f  dx/dt and x - xo are suffi- 
ciently small at t = 0, then they both re- 
main small. 

Growth and Decay 
The solution of the equation for population growth may be expressed in terms of 
exponential functions. 

Many quantities, such as bank balances, populations, the radioactivity of ores, 
and the temperatures of hot objects change at a rate which is proportional to 
the current value of the quantity. In other words, if f ( t )  is the quantity at time 
t ,  then f satisfies the differential equation 

f '(9 = ~ f ( t ) ,  (1) 

where y is a constant. For example, in the specific case of temperature, it is an 
experimental fact that the temperature of a hot object decreases at a 'rate 
proportional to the difference between the temperature of the object and that 
of its surroundings. This is called Newton's law of cooling. 

Example 1 The temperature of a hot bowl of porridge decreases at a rate 0.0837 times the 
difference between its present temperature and room temperature (fixed at 
20°C). Write down a differential equation for the temperature of the porridge. 
(Time is measured in minutes and temperature in "C.) 
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Solution Let T be the temperature (OC) of the porridge and let f ( t )  = T - 20 be its 
temperature above 20°C. Then f'(t) = dT/d t  and so 

f ' ( t )  = - (0.0837) f ( t )  

i.e., 

The minus sign is used because the temperature is decreasing when T is greater 
than 20; y = - 0.0837. A 

We solve equation (1) by guesswork, just as we did the spring equation. The 
answer must be a function which produces itself times a constant when 
differentiated once. It is reasonable that such a function should be related to 
the exponential since e' has the reproductive property (d /d t )e l  = e'. To get a 
factor y, we replace t by yt. Then (d/dt)eY' = yeY', by the chain rule. We can 
also insert a constant factor A to get 

d - (AeY ' )  = y (AeY') .  
dt 

Thus f ( t )  = AeY' solves equation (1). If we pick t = 0, we see that A = f(0). 
This gives us a solution of equation ( 1 ) ;  we shall show below that it is the only 
solution. 

The Solution off' = yf 
Given f(O), there is one and only one solution to the differential equation 
f'(4 = yf(t), namely 

f ( t )  =f(0)eY' (2)  

To show that formula (2) gives the only solution, let us suppose that g( t )  also 
satisfies g'(t) = yg(t) and g(0) = f(0). We will show that g( t )  = f(0)eY1. To do 
this, consider the quotient 

h ( t )  = ---- - 
ey' 

and differentiate: 

h'(t) = - -ye-Y'g(t) + eWY'g'(t) = - ye-Y'g(t) + ye-Y'g(t) = 0. 

Since h'(t) = 0, we may conclude that h is constant; but h(0) = ePog(0) = f(O), 
so e-  "g ( t )  = h( t )  = f(O), and thus 

as required. 

Example 2 If dx/d t  = 3x,  and x = 2 at t = 0, find x for all t .  

Solution If x = f(t) ,  then f(0) = 2 and f' = 3f, so y = 3 in the box above. Hence, by 
formula (2), x = f ( t )  = 2e3'. a 

Example 3 Find a formula for the temperature of the bowl of porridge in Example 1 if it 
starts at 80°C. Jane Cool refuses to eat the porridge when it is too cold- 
namely, if it falls below 50°C. How long does she have to come to the table? 
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Solullon Let f(t) = T - 20 as in Example 1. Then f'(t) = -0.0837f(t) and the initial 
condition is f(0) = 80 - 20 = 60. Therefore 

f(t) = 6oe-0J'837'. 

Hence T = f(t) + 20 = 6 0 e - O . ~ ~ ~ ~ '  + 20. When T = 50, we have 

50 = 60e-0.0837' + 20 
1 = 2e -0.0837t 

e0.0837t = 2 
0.0837t = ln2 = 0.693. 

Thus t = 8.28 minutes. Jane has a little more than 8 minutes before the 
temperature drops to 50°C. A 

Note how the behavior of solution (2) depends on the sign of y. If y > 0, then 
eYt+ oo as t +  oo (growth); if y < 0, then eYt+O as t +  oo (decay). See Fig. 
8.2.1. 

Figure 8.2.1. Growth 
occurs if y > 0, decay if 
y < 0. 

A quantity which depends on time according to equation (1) (or, equiva- 
lently, (2)) is said to undergo natural growth or decay. 

Natural Growth or Decay 
The solution of f' = yf is f(t) = f(0)eYt which grows as t increases if 
y > 0 and which decays as t increases if y < 0. 

Example 4 Suppose that y = f(x) satisfies dy/dx + 3y = 0 and y = 2 at x = 0. Sketch the 
graph Y = f ( 4 .  

Solution The equation may be written dy/dx = - 3y which has the form of equation 
(1) with y = - 3 and the independent variable t replaced by x. By formula (2) 
the solution is y = 2e-3x. The graph is sketched in Fig. 8.2.2. A 

If a quantity f(t) is undergoing natural growth or decay, i.e., f(t) = f(0)eY', we 
notice that 
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Thus the percentage increase or decrease in f over a time interval of length s is 
fixed, independent of when we start. This property, characteristic of natural 
growth or decay is called uniform growth or decay. It states, for example, that 
if you leave money in a bank with a fixed interest rate, then the percentage 
increase in your balance over each period of a given length (say 3 years) is the 
same. 

We can show that if f undergoes uniform growth (or decay), then f 
undergoes natural growth (or decay). Indeed, write equation (3) as 

and differentiate with respect to s: 

Now set s = 0 and let y = f'(O)/f(O): 

f'w = ~ f ( t ) ,  

which is the law of natural growth. Thus natural growth and uniform growth 
are equivalent notions. 

We shall now discuss half-lqe problems. It is a physical law that radioac- 
tive substances decay at a rate proportional to the amount of the substance 
present. If f(t) denotes the amount of the substance at time t, then the 
physical law states that f'(t) = - ~ f ( t )  for a positive constant K. (The minus 
sign is inserted since the substance is decaying.) Thus, formula (2) with 
y = - K gives f(t) = f(0)e -"'. The half-life t ,/, is the time required for half the 
substance to remain. Therefore f(t ,/,) = 4 f(O), so f(O)e-"'l/' = 4 f(0). Hence 
2 = eK'1/2, so 

t,/, = (l/K)ln2. (4) 

Half-Life 
If a quantity decays according to the law f'(t) = - ~f( t ) ,  it will be half 
gone after the elapse of time ti/, = (1 /rc)ln 2; t,/, is called the half-life. 

Example 5 Radium decreases at a rate of 0.0428% per year. What is its half-life? 

Solution Method I. We use the preceding box. Here K = - 0.000428, so the half-life is 
ti/, = (ln2)/0.000428 = 1620 years. 
Method 2. It is efficient in many cases to rederive the formula for half-life 
rather than memorizing it. With this approach, the solution looks like this: Let 
f(t) denote the amount of radium at time t. We have f'(t) = -0.000428f(t), 
so f(t) = f ( ~ ) e - ~ . ~ ~ ~ ~ ~  . If f(t) = 4 f(O), then 4 = e-0.000428'; that is, e0.000428' 
= 2, or 0.000428t = In 2. Hence, t = (In 2)/0.000428 w 1620 years. A 

Example 6 A certain radioactive substance has a half-life of 5085 years. What percentage 
will remain after an elapse of 10,000 years? 
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Solution If f ( t )  is the amount of the substance after an elapse of time t ,  then f ( t )  = 

f(0)eCK' for a constant K .  Since the half-life is 5085, 4 = e-5085K, i.e., K = 

(1/5085)1n2. The amount after time t = 10,000 is 

Thus 25.6% remains. ,A 

Another quantity which often changes at a rate proportional to the amount 
present is a population. 

Example 7 The population of the planet Soap is increasing at an instantaneous rate of 5% 
per year. How long will it take for the population to double? 

Solution Let P(t )  denote the population. Since the rate of increase is 5%, P'(t)  = 
0.05P(t), so P(t )  = P ( o ) ~ ~ . ~ ~ ' .  In order for P( t )  to be 2P(O), we should have 
2 = e0.05t. , that is, 0.05t = ln 2 or t = 20 1n 2. Using ln 2 = 0.6931, we get 
t 13.862 years. A 

In this and similar examples, there is the possibility of confusion over the 
meaning of phrases like "increases at a rate of 5% per year." When the word 
"in~tantaneous" is used, it means that the rate is 5%, i.e., P' = 0.05P. This 
does not mean that after one year the population has increased by 5%-it will 
in fact be greater than that. 

In Section 6.4 we saw the distinction between annual rates and instanta- 
neous rates in connection with problems of finance. If an initial principal Po is 
left in an account earning r% compounded continuously, this means that the 
amount of money P in the account at time t changes according to 

Thus, by formula (2), 

P ( t )  = e r ' / l W ~  0 -  

The annual percentage rate is the percentage increase after one year, 
namely 

This agrees with formula (8)  derived in Section 6.4 by a different method. 

Example 8 How long does it take for a quantity of money to triple if it is left in an 
account earning 8.32% interest compounded continuously? 

Solution Let Po be the amount deposited. By formula (5), 

p ( t )  =: e0.0832t~ 
0 '  

If P( t )  = 3Po, then 
3 = e0.0832r , 

0.0832t = ln 3, 
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Exercises for Section 8.2 
1. The temperature T of a hot iron decreases at a 

rate 0.1 1 times the difference between its present 
temperature and room temperature (20°C). If 
time is measured in minutes, write a differential 
equation for the temperature of the iron. 

2. A population P of monkeys increases at a rate 
0.051 per year times the current population. 
Write down a differential equation for P. 

3. The amount Q in grams of a radioactive sub- 
stance decays at a rate 0.00028 per year times the 
current amount present. Write a differential 
equation for Q. 

4. The amount M of money in a bank increases at 
an instantaneous rate of 13.51% per year times 
the present amount. Write a differential equation 
for M. 

Solve the differential equations in Exercises 5-12 using 
the given data. 

5. f'= -3f,f(O)=2. 
dx 6. - = x, x = 3 when t = 0. 
dt 
dx 7. - - 3x = 0, x = 1 when t = 0. 
dt 
du 8. - - 13u =0,  u = 1 when r = 0. 
dr 
d~ 9. - = 8y, y = 2  when t = 1. 
dt 
d~ 10. - = -10y, y = 1 when x = 1. 
dx 
dv 11. - + 2 v = O , u = 2 w h e n s = 3 .  
ds 
dw 12. - + aw = 0, w = b when x = c (a, b, c con- 
dx 

stants). 

13. If the iron in Exercise 1 starts out at 210°C, how 
long (in minutes) will it take for it to cool to 
10O0C? 

14. If the population P in Exercise 2 starts out at 
P(0) = 800, how long will it take to reach 1500? 

15. If Q(0) = 1 gram in Exercise 3, how long will it 
take until Q = f gram? 

16. How long does it take the money in Exercise 4 to 
double? 

Solve each equation in Exercises 17-20 for f(t) and 
sketch its graph. 

17. f'- 3f =0,  f(0) = 1 
18. f '+3f=O, f(O)= 1 
19. f' = sf, f(0) = e 
20. f ' =  8f, f(1) = e 

Without solving, tell whether or not the solutions of the 
equations in Exercises 21-24 are increasing or decreas- 
ing. 

dx 21. - = 3x, x = 1 when t = 0. 
dt 
dx 22. - = 3x, x = - 1 when t = 0. 
dt 

23. f'= -3f, f(0) = 1. 
24. f'= -3f, f(O)= -1. 

25. A certain radioactive substance decreases at a 
rate of 0.0021% per year. What is its half-life? 

26. Carbon-14 decreases at a rate of 0.01238% per 
year. What is its half-life? 

27. It takes 300,000 years for a certain radioactive 
substance to decay to 30% of its original amount. 
What is its half-life? 

28. It takes 80,000 years for a certain radioactive 
substance to decrease to 75% of its original 
amount. Find the half-life. 

29. The half-life of uranium is about 0.45 billion 
years. If 1 gram of uranium is left undisturbed, 
how long will it take for 90% of it to have 
decayed? 

30. The half-life of substance X is 3,050 years. What 
percentage of substance X remains after 12,200 
years? 

31. Carbon-14 is known to satisfy the decay law 
Q = ~ ~ e - ~ . ~ ~ ~ ' ~ ~ ~ '  for the amount Q present af- 
ter t years. Find the age of a bone sample in 
which the carbon-14 present is 70% of the origi- 
nal amount Qo. 

32. Consider two decay laws for radioactive car- 
bon-14: Q = Qoe-a', Q = ~ , e - ~ ' ,  where a = 

0.0001238 and P = 0.0001236. Find the percent- 
age error between the two exponential laws for 
predicting the age of a skull sample with 50% of 
the carbon- 14 decayed. (See Exercise 3 1 .) 

33. A certain bacterial culture undergoing natural 
growth doubles in size after 10 minutes. If the 
culture contains 100 specimens at time t = 0, 
when will the number have increased to 3000 
specimens? 

34. A rabbit population doubles in size every 18 
months. If there are 10,000 rabbits at t = 0, when 
will the population reach 100,000? 

35. A bathtub is full of hot water at 110°F. After 10 
minutes it will be 90°F. The bathroom is at 
65°F. George College refuses to enter water be- 
low 100°F. How long can he wait to get in the 
tub? 

36. A blacksmith's hot iron is at 830°C in a room at 
32°C. After 1 minute it is 600°C. The blacksmith 
has to wait until it reaches 450°C. How long 
does it take after the 600°C temperature is 
reached? 

37. How long does it take for money left in an 
account earning 7f % interest compounded con- 
tinuously to quadruple? 

38. In a certain bank account, money doubles in 10 
years. What is the annual interest rate com- 
pounded continuously? 
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39. A credit card company advertises: "Your interest 
rate on the unpaid balance is 17% compounded 
continuously, but federal law requires us to state 
that your annual interest rate is 18.53%." Ex- 
plain. 

40. If a credit card charges an interest rate of 21% 
compounded continuously, what is the actual 
annual percentage rate? 

41. A certain calculus textbook sells according to 
this formula: S(t) = 2000 - 1000e-0.3', where t 
is the time in years and S(t) is the number of 
books sold. 
(a) Find S1(t). 
(b) Find lim S(t) and discuss. 

I-+m 

(c) Graph S. 
42. A foolish king, on losing a famous bet, agrees to 

pay a wizard 1 cent on the first day' of the 
month, 2 cents on the second day, 4 cents on the 
third, and so on, each day doubling the sum. 
How much is paid on the thirtieth day?. 

43. The author of a certain calculus textbook is 
awake writing in the stillness of 2 A.M. A sound 
disturbs him. He discovers that the toilet tank 
fills up fast at first, then slows down as the water 

is being shut off. Examining the insides of the 
tank and contemplating for a moment, he thinks 
that maybe during shutoff the rate of flow of 
water into the tank is proportional to the height 
left to go; that is, dx/dt = c(h - x),  where x 
= height of water, h = desired height of water, 
and c = a  constant (depending on the mecha- 
nism). Show that x = h - KeCC'. What is K? 

Looking at this formula for x, he says "That 
explains why my tank is always filling!" and goes 
to bed. 

44. (a) Verify that the solution of dy/dt =p(t)y is 
y = yoexp P(t), where P(t) is the antiderivative of 
p(t) with P(0) = 0. 
(b) Solve dy/dt = ty; y = 1 when t = 0. 

*45. (a) Show that a solution of t(da/dt) = a + h is 

(b) Solve t(da/dt) = a + e-I/', a(1) = 1. 
*46. Develop a general formula for the doubling time 

of a population in terms of its growth rate. 
*47. Develop a general formula for the half-life of the 

amplitude of a damped spring (Exercise 28, Sec- 
tion 8.1). 

8.3 The Hyperbolic 
Functions 
The points (cost, sint) lie on a circle, and (cosh t, sinh t) lie on a hyperbola. 

The hyperbolic functions are certain combinations of exponential functions 
which satisfy identities very similar to those for the trigonometric functions. 
We shall see in the next section that the inverse hyperbolic functions are 
important in integration. 

A good way to introduce the hyperbolic functions is through a differen- 
tial equation which they solve. Recall that sint and cost are solutions of 
the equation d2x/dt2 + x = 0. NOW we switch the sign and consider 
d2x/dt2 - x = 0. (This corresponds to a negative spring constant!) 

We already know one solution to this equation: x = e'. Another is e-', 
because when we differentiate e-' twice we bring down, via the chain rule, 
two minus signs and so recover e-' again. The combination 

x = Ae' + Be-' 

is also a solution, as is readily verified. 
If we wish to find a solution analogous to the sine function, with x = 0 

and dx/dt = 1 when t = 0, we must pick A and B so that 

O = A + B ,  
1 = A - B ,  

so A = 4 and B = -4, giving x = (et - eWt)/2. 
Similarly, if we wish to find a solution analogous to the cosine function, 

we should pick A and B such that x = 1 and dx/dt = 0 when t = 0; that is, 

l = A + B ,  
O = A - B ,  

so A = B = 4, giving x = (e' + e-')/2. 
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This reasoning leads to the following definitions. 

The hyperbolic sine function, written sinh t, is defined by 

The hyperbolic cosine function, written cosh t, is defined by 

Figure 8.3.1. The graphs of 
y = sinh x and y = cosh x. 

The usual trigonometric functions sint and cost are called the circular 
functions because (x, y )  = (cost, sin t) parametrizes the circle x2 + y2 = 1. The 
functions sinh t and cosh t are called hyperbolic functions because ( x ,  y) 
= (cosh t, sinh t )  parametrizes one branch of the hyperbola x2 - y2 = 1 ; that 
is, for any t, we have the identity 

cosh2t - sinh2t = 1. t3) 
(See Fig. 8.3.2.) 

(cosh t ,  s ~ n h  t )  

Figure 8.3.2. The points 
(cos t ,  sin t )  lie on a circle, 
while (cosh t ,  sinh t )  lie on a 
hyperbola. 

To prove formula (3), we square formulas (1) and (2): 
2 

cosh2t = f (e' + e-') = f(e2' + 2 + e-2t) 

and 
2 sinh2t = f ( e '  - e-') = fte2' - 2 + e-2t). 

Subtracting gives formula (3). 
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Example 1 Show that ex = coshx + sinhx. 

Solution By definition, 
- e - X  

cosh x = e-X and sinhx = 
2 2 .  

Adding, coshx + sinhx = ex/2 + e-"/2 + ex/2 - e-"/2 = ex. 

Similarly, e-" = coshx - sinhx. 

The other hyperbolic functions can be introduced by analogy with the 
trigonometric functions: 

cosh x ~ 0 t h ~  = - tanhx = - 
C O S ~ X  ' sinh x ' 

1 sech x = - 1 cschx = - 
C O S ~ X  ' sinhx ' 

Various general identities can be proved exactly as we proved formula 
(3); for instance, the addition formulas are: 

sinh(x + y) = sinh x cosh y + cosh x sinh y, Pa)  
cosh(x + y) = cosh x cosh y + sinh x sinh y. ( 9  

Example 2 Prove identity (5a). 

Solution By definition, 
eX+Y - e-X-Y eXeY - ePxe-Y 

sinh(x + y) = - - 
2 2 

Now we plug in ex = cosh x + sinh x and e - " = cosh x - sinh x to get 

sinh(x + y) = 4 [(coshx + sinh x)(cosh y + sinh y) 

- (cosh x - sinh x)(cosh y - sinh y) 1. 
Expanding, 

sinh(x + y) = 4 (coshx cosh y + coshx sinh y + sinhx cosh y + sinhx sinh y 

- cosh x cosh y + cosh x sinh y + sinh x cosh y - sinh x sinh y) 

= cosh x sinh y + sinh x cosh y. A 

Notice that in formula (5b) for cosh(x + y) there is no minus sign. This is one 
of several differences in signs between rules for the hyperbolic and circular 
functions. Another is in the following: 

d - sinh x = cosh x, 
dx @a) 
d - cosh x = sinh x. 
dx (6b) 

Example 3 Prove formula (6a). 

Solution By definition, sinhx = (ex - e-")/2, so 

d ex - (- l )ePx - sinh x = - - 
dx 2 

+ e - X  = coshx. A 
2 
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We also note that 

sinh( - x) = - sinh x (sinh is odd ) 

and 

cosh(- x) = cosh x (cosh is even). 

From formulas (5a) and (5b) we get the half-angle formulas: 

2 - cosh2x + 1 2 - cOsh 2x - and cash x -. sinh x - 
2 2 

d Example 4 Prove that - tanhx = sech2x. 
dx 

Solution Since tanhx = sinhxlcosh x, the quotient rule gives 

(d/dx)tanhx = (coshx . coshx - sinh x . sinh x)/cosh2x = 1 - tanh2x. 

From cosh2x - sinh2x = 1 we get 1 - sinh2x/cosh2x = I/cosh2x; that is, 1 - 
tanh2x = sech2x. A 

Their Derivatives 

tanhx ' dx 

- sech x = - sech x tanh x, 

- csch x = - csch x coth x. 

Example 5 Differentiate: (a) sinh(3x + x3); (b) cos-'(tanhx); (c) 3x/(coshx + sinh3x). 

Solution (a) 

d d du - sinh(3x + x3) = - sinhu - - , 
dx du dx 

where u = 3x + x3. We compute 

d -sinhu=coshu and & = 3 + 3 x 2 .  
du dx 

Expressing everything in terms of x, we have 

d - sinh(3x + x3) = cosh(3x + x3) .3(1 + x2). 
dx 
d d (b) - cos- '(tanh x) = - cos-'u . (duldx), where u = tanh x. 

dx du 
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We find 

(from the identity 1 - tanh2x = sech2x proved in Example 4), and 

du - = sech2x 
dx 

(also from Example 4). Hence 

d - cos- '(tanh x) = - sech x. 
dx 

3(cosh x + sinh 3x) - 3x(sinh x + 3cosh 3x) 

(') & ( cosh x + sinh 3x (cosh x + sinh 3 ~ ) ~  

(by the quotient rule). A 

Let us return now to the equation d2x/dt2 - u2x = 0. Its solution can be 
summarized as follows. 

The solution of 

That formula (10) gives a solution of equation (9) is easy to see: 

dx - = wxosinh wt + vocosh wt, 
dt 

using formula (6) and the chain rule. Differentiating again, we get 

so equation (9) is verified. 
One may prove that (10) gives the only solution of equation (9) just as in 

the case of the spring equation (Exercise 54). 

Example 7 Solve for f(t): f" - 3f = 0, f(0) = 1, f (0) = -2. 

Solution We use formula (10) with w2 = 3 (so w = fl), xo = f(0) = 1, vo = f(0) = -2, 
and with f(t) in place of x. Thus our solution is 

2 f(t) = coshflt - - s i n h o  t. A 
6 
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Example 8 Prove that coshx has a minimum value of 1 at x = 0. 

Solution (d/dx)coshx = sinhx vanishes only if x = 0 since ex = e-" exactly when 
e2" = 1; that is, x = 0. Also, (d2/dx2)coshx = coshx, which is 1 at x = 0, so 
coshx has a minimum at x = 0, by the second derivative test. A 

The kind of reasoning in the preceding example, together with the techniques 
of graphing, enable us to graph all the hyperbolic functions. These are shown 
in Fig. 8.3.3. 

y = sinh x y = cosh x y = tanh x 

Figure 8.3.3. Graphs of the 
hyperbolic functions. 

y = csch x .v = sech x y = coth x 

Finally, the differentiation formulas for the hyperbolic functions lead to 
integration formulas. 

l sechx  tanh x dx = - sechx + C, 

l c sch  x coth x dx = - csch x + C. 
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Example 9 Compute the integrals (a) S(sinh 3x + x3) dx, (b) tanh x dx, (c) cosh2x dx, S S 
(d) ( sinhx dx.  

1 + cosh2x 

S 1 Solution (a) S(sinh 3x + x3) dx = sinh 3x dx + x3 dx = - cosh 3x + $ + C. S 3 

(b) (tanh x dx = S dx = lnlcosh x 1 + C = ln(cosh x) + C 

(since cosh x > 1, lcosh xl = cosh x). 

(c) Here we use the half-angle formula (8): 

(d) ( sinhx d x = S  - d" (u = coshx) 
1 + cosh2x 1 + u2 

= tan-'u + c = tan-'(coshx) + C. A 

Supplement to Sectlon 8.3: 
Unstable Equilibrium Points 

In Section 8.1, we studied approximations to the differential equation of 
motion m(d2x/dt2) = f(x), where the force function f(x) satisfied the equilib- 
rium condition f(x,) = 0 at some position x,. The linearized equation was 

or, setting y = x - x,, the displacement from equilibrium, 

If f'(xo) < 0, this is the spring equation which has oscillating solutions given 
by trigonometric functions. 

Now we can use the hyperbolic functions to study the case f'(x,) > 0. 

The general solution is y = A cosh( l / fo  t) + ~ s i n h ( d f o  t), with A and 
B depending on the initial values of y and dyldt, as in formula (10). We can 

also write this solution as y = (A + B ) e m t  + (A - B ) e - m t .  No matter 
how small the initial values, unless they are chosen so carefully that A + B 
= 0, the solution will approach + co or - co as t + co. We say that the point 
x, is an unstable equilibrium position. In contrast to the stable case treated in 
Section 8.1, the linearization is not useful for all t, since most solutions 
eventually leave the region where the linear approximation is valid. Still, we 
can correctly conclude that solutions starting arbitrarily close to x, do not 
usually stay close, and that there are special solutions which approach x, as 
t - ~ c o . ~  

This analysis is useful in more advanced studies of differential equations. See, for instance, 
Elementary Differential Equations and Boundary Value Problems, by W .  Boyce and R. DiPrima, 
Chapter 9, Third Edition, Wiley (1977) and Differential Equations and Their Applications, by 
M .  Braun, Chapter 4, Third Edition, Springer-Verlag (1983). 
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For instance, let us find the unstable equilibrium point for the pendulum 
equation 

First note that f ( 8 )  = 0 at 8 = 0 and m, corresponding to the bottom and top 
of pendulum swing (see Fig. 8.1.6). At 8 = m, f ' (8) = - (mg/ l )cos  8 = 
- ( m g / l ) .  (- 1) = m g / l  > 0, so the top position is an unstable equilibrium 
point. At that point, the linearized equation is given by (d2/dt2)(8  - BO) = 

(mg/1)(8 - 00), with solutions 8 - 8, = ~ e  st + ~ e - m ' .  For most ini- 
tial conditions, C  will not equal zero, and so the pendulum will move away 
from the equilibrium point. If the initial conditions are chosen just right, we 
will have C  = 0, and the pendulum will gradually approach the top position as 
t + oo, but it will never arrive. 

A very different application of hyperbolic functions, to the shape of a 
hanging cable, is given in Example 6, Section 8.5. 

Exercises for Section 8.3 
Prove the identities in Exercises 1-8. 

1. tanh2x + sech2x = 1. 
2. coth2x = 1 + csch2x. 
3. cosh(x + y )  = cosh x cosh y + sinh x sinh y. 
4. sinh2x = (cosh 2x - 1)/2. 

d 6. - coth x = - csch2x. 
dx 
d 7. - sechx = - sechx tanhx. 

dx 
d 8. - csch x = - csch x coth x. 
dx 

Differentiate the functions in Exercises 9-24. 
9. sinh(x3 + x2 + 2) 

10. tan- '(cosh x )  
1 I .  sinh x sinh 5x 

12. sinh x 
1 + cosh x 

13. sinh(cos(8x)) 

17. coth3x 
18. (tanh x)(sech x )  
19. exp(tanh 2x) 
20. sin- '(tanh x )  
2 1 a  cosh x 

1 + tanh x 
22. (csch 2x)(l + tan x )  

23. (cosh ,)(, 
1 + tanh2x 

24. (sinh x ) ( l  
1 + sech2x 

Solve the differential equations in Exercises 25-28. 
25. y" - 9y = 0, y(0) = 0, y'(0) = 1. 
26. f " -81 f=O,  f(O)= 1 ,  f'(O)= - 1 .  
27. g" - 3g = 0, g(0) = 2, g'(0) = 0. 
28. h" - 9h = 0, h(0) = 2, hl(0) = 4. 

29. Find the solution of  the equation d2x/dt2 - 9x 
= 0, for which x = 1 and dx/dt = 1 at t = 0. 

30. Solve d?y/dt2 - 25y = 0, where y = 1 and dy/dt 
= - 1 when t = 0. 

3 1 .  Find f ( t )  i f  f" = 36 f, and f (0) = 2, f'(0) = 0. 
32. Find g(t)  i f  g"(t) = 25g(t), and g(0) = 0, 

g'(0) = 1. 
Sketch the graphs of  the functions in Exercises 33-36. 

33. y = 3 + sinhx 
34. y = (cosh x )  - 1 
35. y = tanh 3x 
36. y = 3 cosh 2x 

Compute the integrals in Exercises 37-46. 
37. fcosh 3x dx 

J 

38. l[csch2(2x) + (3 /x ) ]  dx 

39. fcothxdx 

41. lsinh2x dx 

42. I c 0 s h ~ 9 ~  dy 

43. l exs inh  x dx 

44. l e2'cosh 2 t dt 

45. Icosh2x sinh x dx 
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Compute dy/dx in Exercises 47-50. where k2 > k, > 0, 0 < x, < x < x2. Show that 
sinh(x + y )  xo = (x, + ax2)/(l + a), where ci = I/-, is 

47. = 1 
XY an unstable equilibrium. Write the linearized 

48. x + cosh(xy) = 3 equations at this point. 
49. tanh(3xy) + sinh y = 1 *53. Prove the identity (cosh x + sinh x)" = cosh nx + 
50. coth(x - y)  - 3y = 6 sinh nx. 

*54. Prove that the equation d2x/dt2 - 02x = 0, with 
*51. (a) Find the unstable equilibrium point for the 

x = xo and dx/dt = vo when t = 0, has a unique 
equation of motion d2x/dt2 = x2 - 1. 

solution given by x = xocosh wt + (vo/o)sinh ot. 
(b) Write down the linearized equation of motion 

[Hint: Study Exercises 3 1 and 32 of Section 8.1 .] 
at this point. 

Why doesn't the energy method of p. 372 work 
*52. An atom of mass m in a linear molecule is 

in this case? 
subjected to forces of attraction by its neighbors 
given by 

k 1 k2 
f(x> = - 2 + 

(x - x') (x - x212 ' 

8,4 The inverse 
Hyperbolic Functions 
The inverse hyperbolic functions occur in several basic integration formulas. 

We now study the inverses of the hyperbolic functions using the methods of 
Section 5.3. As with the inverse trigonometric functions, this yields some 
interesting integration formulas for algebraic functions. 

We turn first to the inverse sinh function. Since (d/dx)sinhx = coshx is 
positive (Example 8, Section 8.3), sinhx is increasing. The range of sinhx is in 
fact (- co, oo) since sinhx 3 rt co as x + 2 co. Thus, from the inverse func- 
tion test in Section 5.3, we know that y = sinhx has an inverse function 
defined on the whole real line, denoted sinh- 'y by analogy with the notation 
for the inverse trigonometric functions. From the general formula 

d 1 
$ f ' ( ~ ) =  f'o (where y = f (x)) 

for the derivative of an inverse function, we get 

d sinh-'y = 1 - 1 -- 
d~ (d/dx)(sinh x) coshx ' 

From cosh2x - sinh2x = 1, we get 

The positive square root is taken because coshx is always positive. 

d d Example 1 Calculate (a) - sinh-'(3x) and (b) - [sinhP'(3 tanh 3x)I. 
dx dx 

Solution (a) Let u = 3x, so sinh-'3x = sinhm'u. By the chain rule, 

By formula (1) with y replaced by u, we get 

d - sinh- '(3x) = 1 3 =  3 
dx JG7 ,IXe 
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Figure 8.4.1. The graph of 
the y = sinh- ' x .  

(b) By the formula (d/dx)sinh-'x = l/J1 + x 2 ,  and the chain rule, 

d - sinh- '(3 tanh 3x) = 1 d 3 - tanh3x 
dx ./I- dx 

There is an explicit formula for sinh-5 obtained by solving the equation 

for x. Multiplying through by 2ex and gathering terms on the left-hand side of 
the equation gives 2 e P  e2" + 1 = 0. Hence 

(eXl2- 2eXy - 1 = 0, 

and so, by the quadratic formula, 

Since ex is positive, we must select the positive square root. Thus, ex = 

+ \iG, and so x = sinh-ly is given by 

sinh- = + {F). P I  
The basic properties of sinh-' are summarized in the following display. 

1. sinh- 'x is the inverse function of sinhx; sinh- 'x is defined and is 
increasing for all x (Fig. 8.4.1); by definition: sinh-'x = y is that 
number such that sinh y = x. 

dx = sinh- 'x + C = ln(x + d m )  + C. 

Example 2 Find sinh-'5 numerically by using logarithms. 

Solution By (2), sinh-'5 = ln(5 +I/=) = ln(5 + @) = ln(lO.lOO) w 2.31. A 

Example 3 Verify the formula dx = ln(x + JT'T?) + C. 

Solution ln(x + JT'T? ) 
dx 

- - 1 (by the chain rule) 

Thus the antiderivative for I//= is ln(x + d m )  + C. A 
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In a similar fashion we can investigate cosh-'x. Since coshx is increasing on 
[0, w) and has range [I, w), cosh-'x will be increasing, will be defined on 
[I, w), and will have range [0, w). Its graph can be obtained from that of 
coshx by the usual method of looking through the page from the other side 
(Fig. 8.4.2). 

By the same method that we obtained formula (I), we find 

Figure 8.4.2. The graph of 
y = cosh- 'x. d - cosh- 'x = 1 

dx 
(x > 1). 

Jz-i 

Example 4 Find $ cosh-'(\ix2+1), x # 0. 

Solution Let u =dx2 + 1 . Then, by the chain rule, 

-. dx c o s h l ( J f l )  = ( -$- u cosh- 'u) ( 2 ) 

Therefore, 

Similarly, we can consider tanhP'x (see Fig. 8.4.3) and get, for - 1 < x < 1, 

y = tanh x and y = tanh- 'x. (a) y = tanh x (b) y = tanh-'x. 

Example 5 Prove that tanhK1x = f ln[(l + x)/(l - x)], - 1 < x < 1. 

Solution Let y = tanh- 'x, so 

sinhy - (eY-e-') 
x=tanhy=--  coshy (eY+e-Y)' 
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Thus x(eu + e-Y) = eY - e-Y. Multiplying through by e-" and gathering terms 
on the left: 

as required. A 

Example 6 Show directly that the antiderivative of - f o r i x / < l i s - l n -  1 l + ~ + ~  
1 - x2 2 1 - x  

by noticing that 

Solutlon Since 

an antiderivative is 

If 1x1 < 1, (1 + x)/(l - x) > 0, so the absolute value signs can be removed. a 

The remaining inverse functions are investigated in a similar way; the 
results are summarized in Fig. 8.4.4 and the box on the next page. 

functions. 
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Example 7 dx 

Solution Going through the list of integration formulas for hyperbolic functions, we 

find dx = cosh-lx + C. Note that JE = 

ing the technique of integration by substitution with u = 6 x and du = 6 dx, 
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we have 

Exa~nple 8 Find dx 
Jd2-S .  

Solution dx = _I dx - - - 1 

'fi 2J1J-1 2 J d $  ('=I) 
= sinh- 'u + C = sinh- ' ( ~ ) + c . A  

Calculate the derivatives of the functions in Exercises 
1-12. 

1. cosh- '(x2 + 2) 
2. sinh-'(x3 - 2) 
3. sinh-'(3x + cos x) 
4. cosh- '(x2 - tanx) 
5. x tanh- '(x2 - 1) 
6. x2coth- '(x + 1) 

7. x + cosh- 'x 
sinh- 'x + x 

8. 1 + sinh-'x 
1 - cosh- 'x 

9. exp(1 + sinh- 'x) 
10. exp(3 + cosh- 'x) 
1 1. sinh - '[cos(3x)] 
12. coshK1[2 + sin(x2)] 

In Exercises 13-16 calculate the indicated values nu- 
merically using logarithms. 

13. tanh-'(0.5) 
1 14. cothV'(1.3) 
115. sech-'(0.3) 
R 16. csch-'(1.2) 

Derive the identities in Exercises 17-20. 

17. cosh-'x = ln(x + \ I n ) ,  1x1 > I 
18. coth-'x = i l n ( a )  1x1 > 1 x - 1  ' 

Derive the identities in Exercises 21-24. 

d 1 22. - cosh- 'x = - 
dx 

' 

d 23. --sech- 'x = - 1 
dx x \I- 
d 1 24. - coth-'x = - 
dx 1 - x 2 '  

In Exercises 25-28 verify the given integration formulas 
by differentiation. 

= ~ n ( x + \ I Z ) + ~ , / x l > i .  

dx 1 x + l  26. - = T l n ( - ) + ~ , l x l >  I. J 1-x2 x - 1  

27. ("?)+C, 

Calculate the integrals in Exercises 29-36. 
dx 29. f - 

cosx di 

33. J Jm 

tan x dx 

36. J \I= 
+37. Is the function c o s h - ' ( \ I s )  differentiable at 

all x? 
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8.5 Separable 
Differential Equations 
Separable equations can be solved by separating the variables and integrating. 

The previous sections dealt with detailed methods for solving particular types 
of differential equations, such as the spring equation and the equation of 
growth or decay. In this section and the next, we treat a few other classes of 
differential equations that can be solved explicitly, and we discuss a few 
general properties of differential equations. 

A differential equation of the form 

in which the right-hand side factors into a product of a function of x and a 
function of y is called separable. Note that we use the term separable only for 
first-order equations; that is, equations involving only the first derivative of y 
with respect to x. 

We may solve the above separable equation by rewriting it in differential 
notation5 as 

(assuming h ( y)  f 0) 

and integrating: 

If the integrations can be carried out, we obtain an expression relating x and 
y. If this expression can be solved for y,  the problem is solved; otherwise, one 
has an equation that implicitly defines y in terms of x. The constant of 
integration may be determined by giving a value yo toy for a given value xo of 
x; that is, by specifying initial conditions. 

Example 1 Solve dy/dx = - 3xy, y = 1 when x = 0. 

Solution We have 

- -  dy - -3xdx. 
Y 

Integrating both sides gives 

Since y = 1 when x = 0, we choose the positive solution and C = 0, to 
give 

The reader may check by using the chain rule that this function satisfies the 
given differential equation. A 

 or those worried about manipulations with differentials, answers obtained this way can always 
be checked by implicit differentiation. 
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The equation of growth (or decay) y' = yy studied in Section 8.2 is clearly 
separable, and the technique outlined above reproduces our solution y = CeYx. 
The spring equation is not separable since it is of second-order; that is, it 
involves the second derivative of y with respect to x. 

To solve the equation y' = g(x)h(y): 

2. Integrate both sides: 

3. Solve for y if possible. 
4. The constant of integration C is determined by a given value of y at a 

Example 2 Solve dy/dx = y2, with y = 1 when x = 1, and sketch the solution. 

Solution Separating variables and integrating, we get 

--  dy - dx, 
Y 

and so the general solution is 

Substituting the initial conditions y = 1 and x = 1, we find that C must be 
-2, so the specific solution we seek in this case is 

, This function is sketched in Fig. 8.5.1. Notice that the graph has a vertical 
asymptote, and the function is undefined at x = 2. From the point of view of 

I /" the differential equation, there is really nothing to justify using the portion of 
I the function for x > 2, since the equation is not satisfied at x = 2. (One could 

Pigure 8.5.1. The solution imagine changing the value of C for x > 2 and obtaining a new function that 
of y' = y2, y(1) = 1. still satisfies the differential equation and initial conditions.) 

Thus we state that our solution is given by y = 1/(2 - x) for x in 
(- co, 2), and that the solution "blows up" at x = 2. A 

Example 3 Solve 
(a) yy' = cos2x, y(0) = 1 ;  
(b) dy/dx = x/(y + yx2), y(0) = - 1 ;  
(c) y' = x2y2 + x2 - Y2 - 1, y(0) = 0. 
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Solution (a) y dy = cos 2x dx, so y2/2 = 4 sin 2x + C. Since y = 1 when x = 0, C = 4. 
Thus y2 = sin 2x + 1 or y = d m .  (We take the + square root since 
y = + 1 when x = 0.) 
(b) y dy = x dx/(l + x2) so y2/2 = +ln(l + x2) + C, where the integration was 
done by substitution. Thus y 2  = ln(1 + x2) + 2C. Since y = - 1 when x = 0, 
C = 3. Since y is negative near x = 0, we choose the negative root: 

y =  - d l  +ln(l  + x 2 ) .  

(c) The trick is to notice that the right-hand side factors: y' = (x2 - l)(y2 + 1). 
Thus dy/(l + y2) = (x2 - 1)dx; integrating gives tan-> = (x3/3) - x + C. 
Since y(0) = 0, C = 0. Hence y = tan[(x3/3) - x]. A 

Many interesting physical problems involve separable equations. 
Example 4 (Electric circuits) We are told that the equation governing the electric circuit 

shown in Fig. 8.5.2 is 

. . 

r y  and that, in this case, 

E (voltage) is a constant; 
R (resistance) is a constant > 0; 

Figure 8.5.2. A simple L (inductance) is a constant > 0; and 

electric circuit. I (current) is a function of time. 

Solve this equation for I with a given value I, at t = 0. 

Solution We separate variables: 

d l  L- = E - RI, 
dt 

and then integrate: 

Thus 

and so 

E -  R I =  +exp - - t  exp - - C  ( 3 ) : : )  
= A e x p (  ) where A = kexp ( -  f c). 

At t = 0, I = I,, so E - RI, = A.  Substituting this in the previous equation 
and simplifying gives 

E 

Figure 8.5.3. The current AS t -+ 00, 1 approaches the steady state part E/R, while (I, - E / R ) ~ -  R'/L, 
tends to the value E / R  as which approaches zero as t + oo, is called the transient part of I. (See Fig. 
t+m. 8.5.3.) A 

Example 5 (Predator-prey equations) Consider x predators that feed on y prey. The 
numbers x and y change as t changes. Imagine the following model (called the 
Lotka- Volterra model). 
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(i) The prey increase by normal population growth (studied in Section 8.2), at 
a rate by (b is a positive birth rate constant), but decrease at a rate 
proportional to the number of predators and the number of prey, that is, 
- rxy (r is a positive death rate constant). Thus 

- d~ - - by - rxy. 
dt 

(ii) The predators' population decreases at a rate proportional to their number 
due to natural decay (starvation) and increases at a rate proportional to 
the number of predators and the number of prey, that is, 

- dx - - -sx + cxy 
dt 

for constants of starvation and consumption s and c. 

If we eliminate t by writing 

- dy = dyldr we get d~ - - by - ~ X Y  

dx d x / d t '  dx - sx + cxy ' 

Solve this equation. 

Solution The variables separate: 

Integrating, we get 

for a constant C. This is an implicit form for the parametric curves followed 
by the predator-prey population. One can show that these curves are closed 
curves which surround the equilibrium point (b/r,s/c) (the point at which 
dxldt  = 0 and dy/dt = 0), as shown in Fig. P~5.4.~ 

Variants of this model are important in ecology for 'predicting and 

Figure 8.5.4. Solutions of studying cyclic variations in populations. For example, this simple model 

the predator-prey equation. already shows that if an insect prey and its predator are in equilibrium, killing 
both predators and prey with an insecticide can lead to a dramatic increase in 
the population of the prey, followed by an increase in the predators and so on, 
in cyclic fashion. Similar remarks hold for foxes and rabbits, etc. A 

Example 6 (The hanging cable) Consider a freely hanging cable which weighs m kilograms 

' t 
per meter and is subject to a tension To. (See Fig. 8.5.5.) It can be shown7 that 

- 
the shape of the cable satisfies 

Introduce the new variable w = dy/dx and show that w satisfies a w " separable equation. Solve for w and then y. You may assume the graph to be 
I symmetric about they axis. 

Figure 8.5.5. A cable 
hanging under its own For a proof due to Volterra, see G. F. Simmons, Differential Equations, McGraw-Hill (1972) p. 
weight. 286. There is also a good deal of information, including many references, in Chapter 9 of 

Elementary Differential Equations and Boundary Value Problems by W.  Boyce and R. DiPrima, 
Third Edition, Wiley (1977), and in Section 1.5 of Differential Equations and their Applications, by 
M .  Braun, Third Edition, Springer, (1983). 

See, for instance, T. M. Creese and R. M Uaralick, Differential Equations for Engineers, 
McGraw-Hill (1978) p ~ .  71-7< 
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Solution In terms of w, the equation for the cable is 

Separating variables and integrating gives 

sinh-'w = (x + C). 
To 

Since the cable is symmetric about they axis, the slope w = dy/dx is zero 
when x = 0, so the integration constant is zero. 

Now w = sinh[(mg/ To)x], and so 

The integration constant C, is found by setting x = 0. Since cosh(0) = 1 and 
y = h when x = 0 (Fig. 8.5.5), we get 

h = To/mg + C, , so C, = h - To/mg = (mgh - To)/mg. 

Thus the equation for the shape of the cable is 

The graph of coshx takes its name catenary from this example and the 
Latin word catena, meaning "chain." A 

We remark that cables which bear weight, such as the ones on suspension 
bridges, hang in a parabolic form (see Exercise 22). 

Exarnple 7 (Orthogonal trajectories) Consider the family of parabolas y = kx2 for various 
constants k. (a) Find a differential equation satisfied by this family that does 
not involve k by differentiating and eliminating k. (b) Write a differential 
equation for a family of curves orthogonal (= perpendicular) to each of the 
parabolas y = kx2 and solve it. Sketch. 

Solution (a) If we differentiate, we have y' = 2kx; but y = kx2 so k = y/x2, and thus 

Thus any parabola y = kx2 satisfies the equation y' = 2y/x. 

(b) The slope of a line orthogonal to a line of slope m is - l/m, so the 
equation satisfied by the orthogonal trajectories is y' = - x/2y. This equation 
is separable: 

2ydy = -xdx, 

If we write this as Y2 + (x/@12 = C, we see that these curves are 
obtained from the family of concentric circles with radii @ centered at the 
origin by stretching the x axis by a factor of 6. (See Fig. 8.5.6.) They are 
ellipses. (See Section 14.1 for a further discussion of ellipses.) 
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Figure 8.5.6. The orthogo- 
nal trajectories of the 
family of parabolas are 
ellipses. 

Separable differential equations are a special case of the equation 

d~ - = F(x, y), dx 
where F is a function depending on both x and y.8 For example, 

is a differential equation that is not separable. There is little hope of solving 
such equations explicitly, except in rather special cases, such as the separable 
case. In general, one has to resort to numerical or other approximate methods. 
To do so, it is useful to have a geometric picture of what is going on. 

The given data dyldx = F(x, y) tell us the slope at each point of the 
solution y = f(x) that we seek. We can therefore imagine drawing small lines 
in the xy plane, with slope F(x, y) at the point (x, y), as in Fig. 8.5.7. 

The problem of finding a solution to the differential equation is precisely 
the problem of threading our way through this direction field with a curve 
which is tangent to the given direction at each point. (See Fig. 8.5.8. In this 
figure, some of the line segments are vertical, reflecting the fact that the 
formula for F(x, y) may be a fraction whose denominator is sometimes zero.) 

Figure 8.5.7. A plot of a 
direction field. 

---// 

---/ 

Figure 8.5.8. A solution 
threads its way through the 
direction field. 

We study such functions in detail beginning with Chapter 14. The material of those later 
chapters is not needed here. 
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We saw in Example 5 that differential equations may be given in 
parametric form 

dx 
= g(x, Y), and 3 dt = h(x,y). 

(so dy/dx = h(x, y)/g(x, y).) Here we seek a parametric curve (x(t), y(t)) 
solving these two equations. From our discussion of parametric curves in 
Section 2.4, we see that the pair (g(x, y),h(x, y)) gives the velocity of the 
solution curve passing through (x, y). In this formulation, we can interpret 
Fig. 8.5.7 as a velocity field. If one thinks of the motion of a fluid, one can 
phrase the problem of finding solutions to the above pair of differential 
equations as follows: given the velocity field of a fluid, find the paths that 
fluid particles follow. For this reason, a solution curve is often called a flow 
line. 

Example 8 Sketch the direction field for the equation dy/dx = - x/y and solve the 
equation. 

Solution Here the slope at (x, y) is - x / ~ .  We draw small line segments with these 
slopes at a number of selected locations to produce Fig. 8.5.9. 

Figure 8.5.9. The direction 
field for y' = - x/y. 

The equation is separable: 

ydy = -xdx, 

Y 2 +  x2 = 2C.  

Thus any solution is a circle and the solutions taken together form a family of 
circles. This is consistent with the direction field. A 

When a numerical technique is called for, the direction field idea suggests a 
simple method. This procedure, called the Euler method, replaces the actual 
solution curve by a polygonal line and follows the direction field by moving a 
short distance along a straight line. For dy/dx = F(x, y) we start at (x,, yo) 
and break up the interval [x,, x, + a] into n steps x,, x,  = x, + a/n,  x2 
= x, + 2a/n, . . . , xn = xo + a. Now we recursively define 
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that is, 

to produce the desired approximate solution (the polygonal curve shown in 
Fig. 8.5.10). 

///----- - ....- -- -1. Exact solution 

-- .. 
----,, 0 ,,,. ,/-------.-- 

Figure 8.5.10. The Euler ------I ....,,.. ..-.---- . 
\ 

method for numerically ----- .. \,,, \\\ 1- .... -- ------ 1 .\,\\\\\,\1\\\--- solving differential - - - -- - - \\\\\ \\\,.\--- 
equations. 

Example 9 Solve the equation dy/dx = x + cosy, y(0) = 0 from x = 0 to x = n/4 using 
a ten-step Euler method; that is, find y(n/4) approximately. 

Solution The recursive procedure is summarized below. It is helpful to record the data 
in a table as you proceed? Here xo = 0, yo = 0, a  = n/4, n  = 10; thus 
h = a / n  = n/40 = 0.0785398. 

0.0785398 
0.157080 
0.235619 
0.3 14159 
0.392699 
0.47 1239 
0.549779 
0.6283 18 
0.706858 
0.785398 

STOP 

Read in (x , ,  y o ) ,  
step size h = aln, 
and number of steps n. t 

Thus y(n/4) w 0.970263. A 

Calculate slope at ( x i ,  y i ) :  F ( x i ,  y i ) .  
Multiply by step size: h = aln. 
Add to y i  to produce new y i+l .  
Add h to xi  to produce new xi+, . 

The Euler or related methods are particularly easy to use with a programmable calculator. In 
practice, the Euler method is not the most accurate or efficient. Usually the Runge-Kutta or 
predictor-corrector method is more accurate. (For details and comparative error analyses, a book 
such as C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, 
Prentice-Hall Englewood Cliffs, N.J. (1971) should be consulted.) 
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Direction fields can also be used to derive some qualitative information 
without solving the differential equation. 

Example 10 Sketch the direction field for the equation dy/dx = y2 - 3y + 2 and use it to 
find lim,,,y(x) geometrically for a solution satisfying 1 < y(0) < 2. 

Solution First we factor Y2 - 3y + 2 = (y  - l)(y - 2). Thus y2 - 3y + 2 is negative on 
the interval (1,2) and positive on the intervals (2, co) and (- w, 1). The 
direction field in the xy plane, which is independent of x, can now be plotted, 
as in Fig. 8.5.11. 

Positive Y /  / / /  / / / I /  
s o  o r  I/ / / / / / / / I  

Figure 8.5.11. Direction 
field for the equation 
dy/dx = y2 - 3y + 2. 

J,>:! 2 - - - - / + / - /  ---------------- 
\ - \ 

Y (0) 7 \ \ \  
Negative slope 
for l < y < 2  

\ \  \ \ \ \ \  
\ \ \ \ \  

1 2 -  -- - -- -- -/- -/- - - 
Positive slope 
fo r J J< l  1; / / / / / A  / /  / / /  

If 1 < y(0) < 2, then y(x) must thread its way through the direction field, 
always remaining tangent to it. From Fig. 8.5.1 1, it is clear that a solution with 
initial condition y(0) lying in the interval (1,2) is pushed downward, flattens 
out and becomes asymptotic to the line y = 1. Thus lim,,, y(x) = 1. A 
Supplementary Remark. Figure 8.5.1 1 enables us to see that the equilibrium 
solution y = 1 is stable; in other words, any initial condition y(0) close to 1 
gives a solution which remains close to 1 for all x. Compare this with the 
discussion of stable oscillations in the Supplement to Section 8.1. Likewise, the 
solution y = 2 is unstable. Again, consult the discussion of unstable equilibria 
in the Supplement to Section 8.3. 

Exercises for Section 8.5 
In Exercises 1-12 find the solution of the given differ- 
ential equation satisfying the stated conditions (express 
your answer implicitly if necessary). 

dr 1. - = cosx, y(0) = 1. 
dx 

sin x 
7 y(0) = 1. 

13. The current I in an electric circuit is described 
by the equation 3(dI/dt) + 81 = 10, and the ini- 
tial current is I,, = 2.1 at t = 0. Sketch the graph 
of I as a function of time. 

14. Repeat Exercise 13 for I. = 0.3. 
15. Capacitor equation. The equation R(dQ/dt) + 

Q/C = E describes the charge Q on a capacitor, 
where R, C, and E are constants. (See Fig. 
8.5.12.) (a) Find Q as a function of time if Q = 0 
at t = 0. (b) How long does it take for Q to attain 
99% of its limiting charge? 

resistance) 

Figure 8.5.12. A circuit 
(voltage)T+ + 

C 
with a charging capacitor. (capacitance) 
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16. Repeat Exercise 15 for Q = 3.1 at t = 0 and 
R = 2 ,  E = 10, and C = 2 .  

17. Verify directly that x = b/r, y = s/c is a solu- 
tion of the predator-prey equations (see Exam- 
ple 5). 

18. (a) Verify graphically that the equation y - In y 
= c has exactly two positive solutions if c > 1. 
(b) What does this have to do with Fig. 8.5.4? 

19. Logistic law of population growth. If a population 
can support only Po members, the rate of growth 
of the population may be given by dP/dt 
= kP(Po - P). This modification of the law of 
growth dP/dt = a P  discussed in Section 8.2 is 
called the logistic law, or the Verhulst law. Solve 
this equation and show that P tends to Po as 
t + co. Hint: In solving the equation you may 
wish to use the identity 

20. Chemical reaction rates. Chemical reactions often 
proceed at a rate proportional to the concentra- 
tions of each reagent. For example, consider a 
reaction of the type 2A + B +  C in which two 
molecules of A and one of B combine to produce 
one molecule of C. Concentrations are measured 
in moles per liter, where a mole is a definite 
number (6 x of molecules. Let the concen- 
trations of A, B, and C at time t be a, b, c, and 
suppose that c = 0 at t = 0. Since no molecules 
are destroyed, bo - b = (a, - a)/2, where a. and 
bo are the values of a and b at t = 0. The rate of 
change of a is given by da/dt = ka2b for a 
constant k. Solve this equation. [Hint: You will 
need to make up an identity like the one used in 
Exercise 19.1 

21. In Example 6, verify that the solution becomes 
straight as To increases to co. 

22. Suspension bridge. The function y(x) describing a 
suspended cable which weighs m kilograms per 
meter and which is subject to a tension To satis- 
fies dy/dx = (m/To)x. Verify that the cable 
hangs in a parabolic shape. 

23. (a) Find a differential equation satisfied by the 
family of hyperbolas xy = k for various con- 
stants k. 
(b) Find a differential equation satisfied by the 
orthogonal trajectories to the hyperbolas xy = k, 
solve it, and sketch the resulting family of curves. 

24. (a) Find a differential equation satisfied by the 
family of ellipses, x2 + 4y2 = k, k a constant. 

(b) Find a differential equation satisfied by the 
orthogonal trajectories to this family of ellipses, 
solve it and sketch. 

25. (a) Sketch the family of cubics y = ex3, when c is 
constant. 
(b) Find a differential equation satisfied by this 
family. 
(c) Find a differential equation for the orthogo- 
nal family and solve it. 

26. Repeat Exercise 25 for the family of cubics y 
= x3 - dx, where d is constant. 

27. (a) Sketch the direction field for the equation 
dy/dx = 2y/x. (b) Solve this equation. 

28. Sketch the direction field for the equation y' = 
-y/x .  Solve the equation and show that the 
solutions are consistent with your direction field. 

129. Use a ten-step Euler method to find y approxi- 
mately at x = 1 if dy/dx = - x2 and y(0) = 1. 

m30. If y' = x + tan y, y(0) = 0, find y(1) approxi- 
mately using a ten-step Euler procedure. 

131. Find an approximate solution for y(1) if y' = 

xi- and y(0) = 0 using a fifteen-step Euler 
method. 

@32. Redo Example 9 using a twenty-step Euler 
method, compare the answers and discuss. 

In Exercises 33-36, sketch the direction field of the 
given equation and use it to find lim,,,y(x) geometri- 
cally for the given y(0). 

d~ 36. - = y3 - 4y2 + 3y, y(0) = 2. 
dx 

37. Suppose that y = f(x) solves the equation 
dy /dx = exy' + 4xy5, f(0) = 1. Calculate f"'(0). 

38. Suppose y" + 3(y')3 + 8eXy2 = 5 cos x, y'(0) = 1, 
and y"(0) = 2. Calculate y"'(0). 

*39. Consider a family of curves defined by a separa- 
ble equation dy/dx = g(x)h(y). Express the 
family of orthogonal trajectories implicitly in 
terms of integrals. 

*40. Show by a graphical argument that any straight 
line through (b/r,s/c) meets the curve cy - 
s l n y = b l n x - r x + C  (for C >O) at exactly 
two points. (See Example 5). 
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8.6 Linear First-Order 
Equations 
First-order equations which are linear in the unknown function can be solved 
explicitly. 

We have seen that separable equations can be solved directly by integration. 
There are a few other classes of differential equations that can be solved by 
reducing them to integration after a suitable transformation. We shall treat 
one such class now. (Other classes are discussed in Sections 12.7 and 18.3.) 

We consider equations that are linear in the unknown function y :  

d~ - = P ( x ) y  + Q ( x )  dx (I)  
for given functions P and Q of x .  If Q is absent, equation (1) becomes 

which is separable: 

1 - dy = P ( x )  dx, 
Y 

Choosing C = 0 and y > 0 gives the particular solution 

y = exp(J P ( X I  dx)  . (3) 

Now we use the solution (3) of equation (2) to help us simplify equation 
(1). If y solves equation (I), we divide it by the function (3), obtaining a new 
function 

w = y exp(- J ~ ( x ) d x )  (4) 

which turns out to satisfy a simpler equation. By the product and chain rules, 
we get 

The terms involving y cancel, leaving 

= Q(x)exp(- ( ~ ( x )  dx) .  
dx 

The right-hand side is a function of x alone, so we may integrate: 

Combining formulas (4) and (5) gives the general solution y of equation (I), 
written out explicitly in the following box. 
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The general solution of 

Y = e x P ( J ~ ( x ) d x ) ( J ~ ( x ) [ e x ~ ( - J ~ ( x ) d x ) ] d x + ~ ) 7  (6) 

One may verify by direct substitution that the expression (6) for y in this 
display solves equation (1). Instead of memorizing formula (6) for the solution, 
it may be easier to remember the method, as summarized in the following box. 

The expression exp(-JP(x)dx) is called an integrating factor, since multipli- 
cation by this term enables us to solve the equation by integration. 

t 

Example 1 Solve dy/dx = xy + x. 

Solution We follow the procedure in the preceding box. 

1. P ( x ) = x ,  so I p ( x ) d x =  - x2 2 . 

Method tor Solving dy/dx = P(x)y + Q(x) 
1. Calculate P(x) dx, dropping the integration constant. I 

dr 2. Transpose P(x)y to the left side: - - P(x)y = Q(x). 

3. Multiply the equation by exp(- P(x) dx). Idx 
4. The left-side of the equation should now be a derivative: 

[ Y  exp(- J P ( ~ )  dx)]. dx 

Check to make sure. 
5. Integrate both sides, keeping the constant of integration. 
6. Solve the resulting equation for y. 
7. Use the initial condition, if given, to solve for the integration con- 

stant. 

(transposing xy to the left-hand side). 

(multiplying by exp(- x2/2)). 
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which equals the left-hand side in step 3. Thus the equation is now 

5. Integration, using the substitution u = - x2/2, yields 

y exp ( - 2 2 ) = ~ x e x p ( - $ ) d x = - e x p  

6. Solving for y, 

Example 2 Solve the following equations with the stated initial conditions. 

(a) y' = e-" -y,y(O)= 1; 
(b) y' = cos2x - (tan x)y, y(0) = 1. 

Solution (a) The integrating factor is exp(-JP(x)dx) = exp(-J - dx) = exp(x). Thus 

ex(y' + y) = 1, 

d ( e w  = 1, 
dx 

e x y = x +  C. 

Since y(0) = 1, C = 1, soy = (x + 1)e-". 
(b) The integrating factor is exp(Jtanx dx) = exp(- In cosx) = 1 /cos x; (This 
is valid only if cosx > 0, but since our initial condition is x = 0 where 
cosx = 1, this is justified.) Thus 

1 - cos x [ y' +   tan^)^] = cosx, 

d [ 2 ] = cosx, 
dx cosx 

2 = sinx + C. 
COS X 

Since y = 1 when x = 0, C = 1. Thus y = cos x sin x + cos x. It may be verified 
that this solution is valid for all x. A 

Example 3 (Electric circuits) In Example 4, Section 8.5, replace E by the sinusoidal 
voltage 

E = E,sin wt 

with L, R, and Eo constants, and solve the resulting equation. 

Solution The equation is 

d l  - = - -  Eo 
dt 

+ s i n w t .  
L L 

We follow the procedure in the preceding box with x replaced by t and y by I: 

R 1. P(t) = - - , a constant, so JP(t)dt = - tR/L. 
L 

3. exp - - + -  =-exp - sinwt. [ ] RLI) 2 (3 
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4. d { e x p ( T ) ~ }  dt = ~ e x p  "O (3 - sinwr. 

5. exp - I =  - exp - sinotdt. 7 J ( 7 )  
This integral may be evaluated by the method of Example 4, Section 7.4, 

namely integration by parts twice. One gets 

6. Solving for I ,  

Eo I = -  1 - R sin at - w cos wt + ce-IR/ L .  
L ( R , L ) ~ +  w2 ( L 1 

The constant C is determined by the value of I  at t = 0. This expression for I  
contains an oscillatory part, oscillating with the same frequency w as the 
driving voltage (but with a phase shift; see Exercise 10) and a transient part 
Ce - I R l L  which decays to zero as t + m. (See Fig. 8.6.1.) A 

Figure 8.6.1. The graph of 
the solution of a 
sin~soidally forced electric 
circuit containing a resistor 
and an inductor. I 

Example 4 (Pollution) A small lake contains 4 x lo7 liters of pure water at t = 0. A 
polluted stream carries 0.67 liter of pollutant and 10 liters of water into the 
lake per second. (Assume that this mixes instantly with the lake water.) 
Meanwhile, 10.67 liters per second of the lake flow out in a drainage stream. 
Find the amount of pollutant in the lake as a function of time. What is the 
limiting value? 

Solution Let y(t) denote the amount of pollutant in liters in the lake at time t. The 
amount of pollutant in one liter of lake water is thus 

Y (t) 
4 x  107 ' 

The rate of change of y(t) is the rate at which pollutant flows out, which is 
- 10.67y(t)/4 x lo7 = - 2.67 x 10-?(t) liters per second, plus the rate at 
which it flows in, which is 0.67 liter per second. Thus 

y' = -2.67 X 10-5 + 0.67. 

The solution of dy/dt = ay + b, y(0) = 0, is found using the integrating factor 
e-af: 

e-"'(y' - ay) = be-"', 
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Since y = 0 at t = 0, C = b/a. Thus 

Here a = -2.67 x and b = 0.67, so y = (1 - e-2.67x10-7t)(2.51 X lo6) 
liters. For t small, y is relatively small; but for larger t, y approaches the 
(steady-state) catastrophic value of 2.51 X lo6 liters, that is, the lake is well 
over half pollutant. (See Exercise 13 to find out how long this takes.) A 

Example 5 (Falling object in a resisting medium) The downward force acting on a body of 
mass m falling in air is mg, where g is the gravitational constant. The force of 
air resistance is yv, where y is constant of proportionality and v is the 
downward speed. If a body is released from rest, find its speed as a function of 
time t. (Assume it is released from a great enough height so that it has not hit 
the ground by time t.) 

Solution 

Figure 8.6.2. The speed of 
an object moving in a 
resisting medium. 

Example 6 

Figure 8.6.3. A rocket 
blasting off at t = 0. 

Since mass times acceleration is force, and acceleration is the time derivative 
of velocity, we have the equation m(dv/dt) = mg - yv or, equivalently, dv/dt 
= -(y/m)v + g which is a linear first-order equation. Its general solution is 

If v = 0 when t = 0, C must be -mg/y, so v = (mg/y)(l - e-"'Im). Note 
that as t --+ co, e - ~ l / ~ + O  and so v+  mg/y the terminal speed. (See Fig. 
8.6.2.) For small t the velocity is approximately gt, which is what it would be if 
there were no air resistance. As t increases, the air resistance slows the velocity 
and a terminal velocity is approached. A 

(Rocket propulsion) A rocket with an initial mass M,, (kilograms) blasts off at 
time t = 0 (Fig. 8.6.3). The mass decreases with time because the fuel is being 

t Velocity = v 

n 

spent at a constant burn rate r (kilograms per second). Thus, the mass at time 
t is M = M, - rt. If the thrust is a constant force F, and the velocity is v, 
Newton's second law gives 

where g = 9.8 is the gravitational constant. (We neglect air resistance and 
assume the motion to be vertical.) 

(a) Solve equation (7). 
(b) If the mass of the rocket at burnout is M I ,  compute the velocity at 

burnout. 
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Solution (a) Substituting M = Mo - rt into equation (7) gives 

d - [(M, - rt)v] = F - (Mo - rt)g.  
dt 

Although this is a linear equation in v, it is already in a form which we can 
directly integrate: 

( F - g ( M o - r t ) ) d t +  C 

Solving for v, 

Since v = 0 at t = 0, C = 0, so the solution is 

(b) At burnout, Mo - rt = M I ,  so 

is the velocity at burnout. A 

Exercises for Section 8.6 
In Exercises 1-4, solve the given differential equation 
by the method of this section. 

d~ 2. - = ysinx - 2sinx. 
dx 
d~ 3. - = x3y - x3. 
dx 

In Exercises 5-8, solve the given equation with the 
stated conditions. 

5. y' = y cos x + 2 cos x, y(0) = 0. 
Y 6. y' = - + x, y(1) = 1. 
X 

7. xyl= ex-y,y( l )=O.  
8. y' = y + cos 5x, y(0) = 0. 

9. Rework Example 3 assuming that the voltage is 
E = Eosinot + E, ,  i.e., a sinusoidal plus a con- 
stant voltage. 

10. In Example 3, use the method on p. 373 of 
Section 8.1 to determine the amplitude and 
phase of the oscillatory part: 

1 1. The equation R(dI/ dt) + (I/  C) = E describes 
the current I in a circuit containing a resistor 
with resistance R (a constant) and a capacitor 
with capacitance C (a constant) as shown in Fig. 
8.6.4. If E = E,,, a constant, and I = 0 at t = 0, 
find I as a function of time. Discuss your solu- 
tion. 

Figure 8.6.4. A resistor and 
a capacitor in an electric 
circuit. dc 

12. Repeat Exercise 11 for the case I = I. at t = 0. 
13. In Example 4, show that the lake will reach 90% 

of its limiting pollution value within 3.33 months. 
14. Mixingproblem. A lake contains 5 x 10' liters of 

water, into which is dissolved lo4 kilograms of 
salt at t = 0. Water flows into the lake at a rate 
of 100 liters per second and contains 1% salt; 
water flows out of the lake at the same rate. Find 
the amount of salt in the lake as a function of 
time. When is 90% of the limiting amount of salt 
reached? 
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15. Two-stage mixing. Suppose the pollutants from 
the lake in Example 4 empty into a second 
smaller lake rather than the stream. At t = 0, the 
smaller lake contains lo7 liters of pure water. 
The second lake has an exit stream carrying the 
same volume of fluid as entered. Find the 
amount of pollution in the second lake as a 
function of time. 

16. Repeat Exercise 15 with the size and flow rates 
of the lake in Example 4 replaced by those in 
Exercise 14. 

17. The terminal speed of a person in free fall in air 
is about 64 meters per second (see Example 5). 
How long does it take to reach 90% of terminal 
speed? How far has the person fallen in this 
time? (g = 9.8 meters per second2). 

18. The terminal speed of a person falling with a 
parachute is about 6.3 meters per second (see 
Example 5). How long does it take to reach 90% 
of terminal speed? How far has the person fallen 
in this time? ( g  = 9.8 meters per second2). 

19. Falling object with drag resistance. Redo Example 
5 assuming that the resistance is proportional to 
the square of the velocity. 

20. An object of mass 10 kilograms is dropped from 
a balloon. The force of air resistance is 0.07v, 
where v is the velocity. What is the object's 
velocity as a function of time? How far has the 
object traveled before it is within 10% of its 
terminal velocity? 

21. What is the acceleration of the rocket in Exam- 
ple 6 just before burnout? 

22. How high is the rocket in Example 6 at burnout? 

Review Exercises for Chapter 8 
Solve the differential equations with the given condi- 
tions in Exercises 1-22. 

d~ 1. - = 3y, y(0) = 1. 
dt 
d~ 2. - = y, y(0) = 1. dt 

d 4  3. - + 3y = 0, y(0) =o ,  yf(0)= 1. 
dt2 

d 4  4. - + 9y = 0, y(0) = 2; y'(0) = 0. 
dt2 
d~ 5. - = 3y + 1, y(0) = 1. 
dt 
d~ 6. - = (cos t)y + cost, y(0) = 0. 
dt 
d~ 7. - = t3y2, Y(0) = 1. 
dt 
d~ 8. - + 1Oy = 0, y(0) = 1. 
dt 

9. f' = 4f; f(0) = 1. 

23. Sketch the direction field for the equation dy/dx 
= y + 2x and solve the equation. 

24. Sketch the direction field for the equation dy/dx 
= - 3y + x and solve the equation. 

a25. Assuming that P(x) and Q(x) are continuous 
functions of x, prove that the problem y' = 
P(x)y + Q(x), y(0) = y o  has exactIy one solu- 
tion. 

26. Express the solution of the equation y' = xy + 1, 
y(0) = 1 in terms of an integral. 

a27. Bernoulli's equation. This equation has the form 
dy/dx = P(x)y + Q(x)yn, n = 2,3,4, . . . . 
(a) Show that the equation satisfied by w 

is linear in w. 
(b) Use (a) to solve the equation x(dy/dx) 

= ."y' - Y. 
*28. Riccati equation. This equation is dy/dx = 

P(x> + Q(x)y + R(x)y2. 
(a) Let yl(x) be a known solution (found by 

inspection). Show that the general solution is 
y(x) = y ,(x) + w(x), where w satisfies the 
Bernoulli equation (see Exercise 27) dw/dx 
= [ Q(x) + 2R(x)yl(x)]w + R(x)w~.  

(b) Use (a) to solve the Riccati equation y' 
= y / x  + x3y2 - x5, taking yl(x) = x. 

*29. Redo the rocket propulsion Example 6 adding 
air resistance proportional to velocity. 

*30. Solve the equation dy/dt = - Xy + r, where X 
and r are constants. Write a two page report on 
how this equation was used to study the Van 
Meegeren art forgeries which were done during 
World War 11. (See M. Braun, Differential Equa- 
tions and their Applications, Third Edition, 
Springer-Verlag, New York (1983), Section 1.3). 

d2x 13. - + x = O ;  x = 1  when t=O,  x = O  when 
dt2 

t = a/4. 
d2x 14. - + 6 x  =O; x = 1 when t =0,  x = 6  when 
dt2 

dx 19. - = -4x; x = 1 when t = 0. 
dt 
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23. Solve for g(t): 3(d2/dt2)g(t) = -7g(t), g(0) = 1 ,  
g'(0) = -2. Find the amplitude and phase of  
g(t). Sketch. 

24. Solve for z = f ( t ) :  d2z/dt2  + 5z = 0, f(0) = 

- 3, f'(0) = 4. Find the amplitude and phase of  
f(t). Sketch. 

25. Sketch the graph of  y as a function of x i f  
-d$ /dx2=2y;  y = f ,  and dy /dx=+ when 
x = 0. 

26. Sketch the solution of d2x/dt2 + 9x = 0, where 
x(0) = 1, x'(0) = 0. 

27. Sketch the graph of  the solution of  y' = - 8y, 
y = 1 when x = 0. 

28. Sketch the graph of  y = f ( x )  i f  f' = 2f + 3, and 
f (0) = 0. 

29. Sketch the graph of  the solution to dx/dt = 

- x + 3, x(0) = 0 and compute lim,,,x(t). 
30. Sketch the graph of  the solution to dxldt = 

. - 2x + 2, x(0) = 0 and compute lim,,,x(t). 
31. Solve d2x/dt2 = dx/dt,  x(0) = 1 ,  xf(0) = 1 by 

letting y = dx / dt . 
32. Solve d2x /d t2  = [ 1 / ( 1  + t ) ]dx /d t ,  x(0)  = 1 ,  

x'(0) = 1 by lettingy = dx/dt. 
33. Solve d$/dx2 + dy/dx = x ,  y(0) = 0, yf(0) = 1. 

[Hint: Let w = dy/dx]. 
34. Solve y" + 3yy' = 0 fory(x)  i f  y(0) = 1, y'(0) = 2. 

[Hint: yy' = (y2/2)'.] 
35. Solve d$/dx2 = 25y, y(0) = 0, y(1) = 1. 
36. Solve d?/dx2 = 36y, y(0) = 1, y(1) = 0. 

Differentiate the functions in Exercises 37-44. 
37. sinh(3x2) 
38. tanh(x3 + x )  
39. cosh- ' ( x2  + 1) 
40. tanh- ' ( x4  - 1 )  
41. (sinh- 'x)(cosh 3x)  
42. (cosh- '3x)(tanh x2)  
43. exp(1 - cosh-'(3x)) 
44. 3(cosh-'(5x2) + 1 )  

Calculate the integrals in Exercise 45-50. 

46. jsech2x tanh XI/- dx 

dx 

49. x sinhx dx I 
50. i x  cosh x dx 

51. A weight o f  5 grams hangs on a spring with 
spring constant k = 2.1. Find the displacement 
x ( t )  of the mass i f  x(0) = 1 and xf(0) = 0. 

52. A weight hanging on a spring oscillates with a 
frequency of two cycles per second. Find the 
displacement x ( t )  of the mass if x(0) = 1 and 
x'(0) = 0. 

53. An observer sees a weight of 10 grams on a 
spring undergoing the motion x ( t )  = lOsin(8t). 
(a) What is the spring constant? 
(b) What force acts on the weight at t = n/16? 

54. A 3-foot metal rod is suspended horizontally 
from a spring, as shown in Fig. 8.R.1. The rod 
bobs up and down around the equilibrium point, 
5 feet from the ground, and an amplitude of 1 
foot and a frequency of  two bobs per second. 
What is the maximum length of its shadow? How 
fast is its shadow changing length when the rod 
passes the middle of  its bob? 

Shadow 

Figure 8.R.l. Study the 
movement of the shadow of 
the bobbing rod. 

55. Simple Harmonic Motion with Damping. Consider 
the equation x" + 2px' + 02x = 0, where 0 < p 
< w. (a) Show that y = eb'x satisfies a harmonic 
oscillator equation. (b) Show that the solution is 
o f  the form x = e - P t ( ~  cosw,t + Bsinw, t )  
where w, = {n, and A and B are con- 
stants. (c) Solve x" + 2x' + 4x = 0; x(0) = 1 ,  
x'(0) = 0, and sketch. 

56. Forced oscillations. 
(a) Show that a solution of  the differential 

equation x" + 2px' + w2x = focos o0t is 

- - fo 
2 

[2w0p sin wot + (w2 - w;)cos wot . 
(w2 - a:) + 40; 8 I 

(b )  Show that the general solution is x ( t )  
= x l ( t )  + xo(t) where xo is the solution 
found in Exercise 55. 

(c)  Resonance. Show that the "amplitude" 
fo/[(w2 - + 4&p2] of  the solution is 
largest when oo is near w (the natural fre- 
quency) for /3 (the friction constant) small, 
by maximizing the amplitude for fixed fO, w, 
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p and variable wo. (This is the phenomenon 
responsible for the Tacoma bridge disas- 
ter . . . somewhat simplified of course; see 
Section 12.7 for further information.) 

57. If a population doubles every 10 years and is 
now 100,000, how long will it take to reach 10 
million? 

58. The half-life of a certain radioactive substance is 
15,500 years. What percentage will have decayed 
after 50,000 years? 

59. A certain radioactive substance decreases at a 
rate of 0.00128% per year. What is its half-life? 

60. (a) The population of the United States in 1900 
was about 76 million; in 1910, about 92 million. 
Assume that the population growth is uniform, 
so f(t) = eYff(O), t in years after 1900. (i) Show 
that y 0.0191. (ii) What would have been a 
reasonable prediction for the population in 1960? 
In 1970? (iii) At this rate, how long does it take for 
the population to double? 
(b) The actual U.S. population in 1960 was about 
179 million and in 1970 about 203 million. (i) By 
what fraction did the "growth rate factor" ("y") 
change between 1900- 19 10 and 1960- 1970? (ii) 
Compare the percentage increase in population 
from 1900 to 1910 with the percentage increase 
from 1960 to 1970. 

61. If an object cools from 100°C to 80°C in an 
environment of 18°C in 8 minutes, how long will 
it take to cool from 100" to 50°C? 

62. "Suppose the pharaohs had built nuclear energy 
plants. They might have elected to store the 
resulting radioactive wastes inside the pyramids 
they built. Not a bad solution, considering how 
well the pyramids have lasted. But pluto- 
nium-239 stored in the oldest of them-some 
4600 years a g ~ w o u l d  today still exhibit 88 
percent of its initial radioactivity." (see G. Har- 
din, "The Fallibility Factor," Skeptic 14 (1976): 
12.) 
(a) What is the half-life of plutonium? 
(b) How long will it take for plutonium stored 

today to have only 1% of its present radioac- 
tivity? How long for &? 

63. (a) The oil consumption rate satisfies the equa- 
tion C(t) = Coert, where Co is the consumption 
rate at t = 0 (number of barrels per year) and r is 
a constant. If the consumption rate is Co = 2.5 x 
10'' barrels per year in 1976 and r = 0.06, how 
long will it take before 2 x 1012 barrels (the total 
world's supply) are used up? 
(b) As the fuel is almost used up, the prices will 
probably skyrocket and other sources of energy 
will be turned to. Let S(t) be the supply left at 
time t. Assume that dS/dt = - a s ,  where a is a 
constant (the panic factor). Find S(t). 

64. (a) A bank advertises "5% interest on savings- 
but you earn more because it is compounded 

continuously." The formula for computing the 
amount M(t) of money in an account t days 
after M(0) dollars is deposited (and left un- 
touched) is M(t) = M ( o ) ~ ~ . ~ ~ ~ / ~ ~ ~ .  What is the 
percentage increase on an amount M(0) left un- 
touched for 1 year? 
(b) A bank wants to compute its interest by the 
method in part (a), but it wants to give only $5 
interest on each $100 that is left untouched for 1 
year. How must it change the formula for that to 
occur? 

65. A certain electric circuit is governed by the equa- 
tion LdI/dt + RI = E, where E, R, and L are 
constants. Graph the solution if I. < E/R. 

66. If a savings account containing P dollars grows 
at a rate dP/dt = rP + W (interest with continu- 
ous deposits), find P in terms of its value Po at 
t = 0. 

67. (a) Sketch the direction field for the equation 
y'  = - 9x /y .  Solve the equation exactly. 
(b) Find the orthogonal trajectories for the solu- 
tions in (a). 

68. Consider the predator-prey model in Example 5, 
Section 8.5. Solve this explicitly if r = 0 (i.e., 
ignore deaths of the prey). 

69. Suppose your car radiator holds 4 gallons of 
fluid two thirds of which is water and one third is 
old antifreeze. The mixture begins flowing out at 
a rate of 5 gallon per minute while fresh water is 
added at the same rate. How long does it take for 
the mixture to be 95% fresh water? Is it faster to 
wait until the radiator has drained before adding 
fresh water? 

70. An object falling freely with air resistance has a 
terminal speed of 20 meters per sec. Find a 
formula for its velocity as a function of time. 

71. The current I in a certain electric circuit is gov- 
erned by dZ/dt = - 31 + 2 sin(nt), and I = 1 at 
t = 0. Find the solution. 

72. 11; Example 6, Section 8.6, suppose that the 
burnout mass is 10% of the initial mass Mo, the 
burnout time is 3 minutes, and the rocket thrust 
is 3Mog. Calculate the acceleration of the rocket 
just before burnout in terms of Mo and g. 

73. Sketch the direction field for the equation y' 
= 3y + 4 and solve it. 

74. Sketch the direction field for the equation y' = 
-4y + 1 and solve it. 

75. Let x(t) be the solution of dx/dt = x2 - 5x + 4, 
x(0) = 3. Find lim,,,x(t). 

76. Let x satisfy dx/dt = x3 - 4x2 + 3x, x(0) = 2. 
Find lim,,,x(t). 

m77. Test the accuracy of the Euler method by using a 
ten-step Euler method on the problem of finding 
y(1) if y' = y and y(0) = 1. Compare your answer 
with the exact solution and with a twenty-step 
Euler method. 
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g78. Solve y' = csc y approximately for 0 < x < 1 
withy(0) = I using a ten-step Euler method. 

@79. Numerically solve for y(2) if y' = y2 and y(0) 
= 1, using a twenty-step Euler method. Do you 
detect some numerical trouble?. What do you 
think is going wrong? 

@80. Solve for y(1) if y' = cos(x + y) and y(0) = 0, 
using a ten-step Euler method. 

8 1. Solve y' = ay + b, given constants a and b, by 
(a) introducing w = y + b/a  and a differentiai 

equation for w; 
(b) treating it as a separable equation; and 
(c) treating it as a linear equation. 
Are your answers the same? 

+82. Let x(t) be the solution of dx/dt = - x  + 
3sinat, x(0) = 1. Find a,  o and B such that 
lim,,,[x(t) - a cos(ot + B)] = 0. 

*83. Simple pendulum. The equation of motion for a 
simple pendulum (see Fig. 8.R.2) is 

Figure 8.R.2. A simple Gravity _-- 
pendulum. 

(a) Let w(t) = dB/dt. Show that 

and so 

w2 g - - - - (cos 8 - cos Bo), 
2 L 

where w = 0 when B = Oo (the maximum 
value of 8). 

(b) Conclude that B is implicitly determined by 

(c) Show that the period of oscillation is 

where k = sin(8,/2). [Hint: Write cos B 
= 1 - 2 sin2(8/2).] The last integral is called 
an elliptic integral of the first kind, and can- 
not be evaluated explicitly. 

(d) How does the answer in (c) compare with 
the prediction from linearized oscillations 
for Oo small? 

*84. A photographer dips a thermometer into a devel- 
oping solution to determine its temperature in 
degrees Centigrade. The temperature B(t) regis- 
tered by the thermometer satisfies a differential 
equation d8/dt = - k(8 - 8), where # is the true 
temperature of the solution and k is a constant. 
How can the photographer determine when 8 is 
correct to within 0.1 "C? 

*85. (a) Find y = f(x) so that 

for all a and b. 
(b) What geometric problem leads to the prob- 
lem (a). 

Copyright 1985 Springer-Verlag.  All rights reserved.



Chapter 9 

Many physical and geometric quantities can be expressed as integrals. 

Our applications of integration in Chapter 4 were limited to area, distance- 
velocity, and rate problems. In this chapter, we will see how to use integrals to 
set up problems involving volumes, averages, centers of mass, work, energy, 
and power. The techniques developed in Chapter 7 make it possible to solve 
many of these problems completely. 

9.1 Volumes by the Slice 
Method 
The volume of a solid region is an integral of its cross-sectional areas. 

By thinking of a region in space as being composed of "infinitesimally thin 
slices," we shall obtain a formula for volumes in terms of the areas of slices. In 
this section, we apply the formula in a variety of special cases. Further 
methods for calculating volumes will appear when we study multiple integra- 
tion in Chapter 17. 

We will develop the slice method for volumes by analogy with the 
computation of areas by integration. Iff and g are functions with f(x) & g(x) 
on [a, b], then the area between the graphs off and g is [ g(x) - f(x)] dx (see 
Section 4.6). We recall the infinitesimal argument for this formula. Think of 
the region as being composed of infinitesimally thin strips obtained by cutting 
with lines perpendicular to the x axis. Denote the vertical line through x by 
Lx; the intersection of Lx with the region between the graphs has length 
l(x) = g(x) -:f(x), and the corresponding "infinitesimal rectangle" with thick- 
ness dx has area I(x) dx (= height X width) (see Fig. 9.1.1). The area of the 

Figure 9.1.1. The area of entire region, obtained by "summing" the infinitesimal areas, is 
the shaded region is 
J t l ( x )  dx. 

Given a region surrounded by a closed curve, we can often use 
the same formula Jb,l(x)dx to find its area. To implement this, we posi- 
tion it conveniently with respect to the axes and .determine a and b 
by noting where the ends of the region are. We determine I(x) by using the ge- 
ometry of the situation at hand. This is done for a disk of radius r in 
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Fig. 9.1.2. We may evaluate the integral 1'_,2 I/- dx by using integral 
tables to obtain the answer vr2, in agreement with elementary geometry. (One 
can also readily evaluate integrals of this type by using the substitution 
x = r cos 8.) 

Figure 9.1.2. Area of the 

disk = j ? , 2 J Z 7  dx. 

To find the volume of a solid region, we imagine it sliced by a family of 
parallel planes: The plane P, is perpendicular to a fixed x axis in space at a 
distance x from a reference point (Fig. 9.1.3). 

The plane P, cuts the solid in a plane. region R,; the corresponding 
"infinitesimal piece" of the solid is a slab whose base is a region R, and whose 
thickness is dx (Fig. 9.1.4). The volume of such a cylinder is equal to the area 

Figure 9.1.3. The plane P, 
is at distance x horn Po. 

Figure 9.1.4. An infinites- 
imally thin slice of a solid. 

of the base R ,  times the thickness dx. If we denote the area of R, by A(x), 
then this volume is A (x) dx. Thus the volume of the entire solid, obtained by 
summing, is the integral ~ b , ~ ( x ) d x ,  where the limits a and b are determined 
by the ends of the solid. 

The Slice Method 
Let S be a solid and P, be a family of parallel planes such that: 

1. S lies between Pa and P,; 
2. the area of the slice of S cut by P, is A(x). 

Then the volume of S is equal to 

l b ~  (x) dx. 
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The slice method can also be justified using step functions. We shall see how 
to do this below. 

In simple cases, the areas A (x) can be computed by elementary geometry. 
For more complicated problems, it may be necessary to do a preliminary 
integration to find the A(x)'s themselves. 

Example 11 Find the volume of a ball' of radius r. 

Solution Draw the ball above the x axis as in Fig. 9.1.5. 

region R, of area A ( x )  

Figure 9.1.5. The area of Y 

the slice at x  of a ball of 
radius r  is 
A ( x )  = n-(r2 - x2) .  

Let the plane Po pass through the center of the ball. The ball lies 
between P-, and P,, and the slice R, is a disk of radius d-. The area of 
the slice is s x (radiu~)~; i.e., A(x) = ~(d-)~ = n(r2 - x2). Thus the 
volume is 

Example 2 Find the volume of the conical solid in Fig. 9.1.6. (The base is a circle.) 

Figure 9.1.6. Find the 
volume of this oblique 
circular cone. 

Figure9.1.7. IDEI/IABI 
= .lGEI/lGBI = IG~IIIGCI 
by similar triangles. But 
lABl= r ,  lGCl= h, and 
IGFI = h  - x ,  andso 
1 D E  1 = [ (h  - x ) / h ] r .  

Solution We let the x axis be vertical and choose the family P, of planes such that Po 
contains the base of the cone and P, is at distance x above Po. Then the cone 
lies between Po and P,, and the plane section by P, is a disk with radius 
[(h - x)/h]r and area n[(h - x)/h12r2 (see Fig. 9.1.7). By the slice method, 

' A  sphere is the set of points in space at  a fixed distance from a point. A ball is the solid region 
enclosed by a sphere, just as a disk is the plane region enclosed by a circle. 
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the volume is 

Example 3 Find the volume of the solid W shown in Fig. 9.1.8. It can be thought of as a 
wedge-shaped piece of a cylindrical tree of radius r obtained by making 
two saw cuts to the tree's center, one horizontally and one at an 
angle 0. 

X 

Figure 9.1.8. Find the 
volume of the wedge W. 

Solution With the setup in Fig. 9.1.8, we slice W by planes to produce triangles R, of 
area A(x) as shown. The base b of the triangle is b = dm, and its height 
is h = b tan0 = $-tan$. Thus, A (x) = $ bh = $(r2 - x2)tan0. Hence, 
the volume is 

Notice that even though we started with a region with a circular boundary, n 
does not occur in the answer! A 

Example 4 A ball of radius r is cut into three pieces by parallel planes at a distance of r/3 
on each side of the center. Find the volume of each piece. 

Solution The middle piece lies between the planes P_,/, and P,/, of Example 1, and 
the area function is A(x) = n(r2 - x2) as before, so the volume of the middle 
piece is 

This leaves a volume of (4 - E)nr3 = nr3 to be divided between the two 
outside pieces. Since they are congruent, each of them has volume nr3. (YOU 
may check this by computing JiI3n(r2 - x2)dx.) .A 

One way to construct a solid is to take a plane region R,, as shown in Fig. 9.1.9 
and revolve it around the x axis so that it sweeps out a solid region S.  Such 
solids are common in woodworking shops (lathe-tooled table legs), in pottery 
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Revolve 

Figure 9.1.9. S is the solid 
of revolution obtained by 
revolving the plane region 
R about the x axis. 3 

studios (wheel-thrown pots), and in nature (unicellular organisms).' They are 
called solids of revolution and are said to have axial symmetry. 

Suppose that region R is bounded by the lines x = a, x = b, and y = 0, 
and by the graph of the functiony = f(x). To compute the volume of S by the 
slice method, we use the family of planes perpendicular to the x axis, with Po 
passing through the origin. The plane section of S by P, is a circular disk of 
radius f(x) (see Fig. 9.1. lo), so its area A (x) is m [  f(x)12. By the basic formula 
of the slice method, the volume of S is 

Figure 9.1.10. The volume 
of a solid of revolution 
obtained by the disk I 
method. kxA  

We use the term "disk method" for this special case of the slice method since 
the slices are disks. 

Disk Method 
The volume of the solid of revolution obtained by revolving the region 
under the graph of a (non-negative) function f(x) on [a, b] about the x 

Exarnple 5 The region under the graph of x2 on [0, I] is revolved about the x axis. Sketch 
the resulting solid and find its volume. 

Solution The solid, which is shaped something like a trumpet, is sketched in Fig. 9.1.1 1. 

Figure 9.1.11. The volume 
of this solid of revolution is 
nJ:(x2)' dx. 

See D'Arcy Thompson, On Growth and Form, abridged edition, Cambridge University Press 
(1969). 
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According to the disk method, its volume is 

Example 6 The region between the graphs of sinx and x on [0, n/2] is revolved about the 
x axis. Sketch the resulting solid and find its volume. 

Solution The solid is sketched in Fig. 9.1.12. It has the form of a hollowed-out cone. 

Figure 9.1.12. The region 
between the graphs of sin x 
and x is revolved about the 
x axis. 

The volume is that of the cone minus that of the hole. The cone is obtained by 
revolving the region under the graph of x on [O, 11 about the axis, so its 
volume is 

The hole is obtained by revolving the region under the graph of sinx on 
[O, n/2] about the x axis, so its volume is 

nc'2sin2x dx = ni'/2 - 2x dx (since cos 2x = 1 - 2 sin2x) 

Thus the volume of our solid is r4/24 - r2/4  w 1.59. A 

The volume of the solid obtained by rotating the region between the graphs of 
two functions f and g (with f(x) < g(x) on [a, b]) can be done as in Example 6 
or by the washer method which proceeds as follows. In Fig. 9.1.13, the volume 
of the shaded region (the "washer") is the area x thickness. The area of the 
washer is the area of the complete disk minus that of the hole. Thus, the 
washer's volume is 

(.r mi2 - n [ f ( x ) ~ 2 )  dx. 

Thus, the total volume is 

The reader should notice that this method gives the same answer as one finds 
by using the method of Example 6. 
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Figure 9.1.13. The washer 
method. 

Our formula for volumes by the slice method was introduced via infinites- 
imal~. A more rigorous argument for the formula is based on the use of upper 
and lower sums.3 To present this argument, we first look at the case where S is 
composed of n cylinders, as in Fig. 9.1.14. 

If the ith cylinder Ci lies between the planes P , - ,  and Pxi and has 
cross-sectional area. k,, then the function A (x) is a step function on the 
interval [x,, x,]; in fact, A(x) = k, for x in (xi-, , xi). TI, : volume of C, is the 
product of its base area k, by its height Ax, = xi - xi-,, so the volume of the 
total figure is C?, ,k,Ax,; but this is just the integral pOA(x) dx of the step 
function A(x). We conclude that if S is a "stepwise cylindrical" solid between 

9.1.14. A "stepwise the planes Pa and P, , then 
cylindrical" solid. 

b 
volume s = l A (x) dx. 

If S is a reasonably "smooth" solid region, we expect that it can be squeezed 
arbitrarily closely between stepwise cylindrical regions on the inside and 
outside. Specifically, for every positive number E ,  there should be a stepwise 
cylindrical region S, inside S and another such region So outside S such that 
(volume So) - (volume S,) < E .  If Ai(x) and A,(x) are the corresponding 
functions, then A, and A, are step functions, and we have the inequality 
A,(x) < A (x) < A,(x), so 

volume S, = L b ~ ,  (x) dx < (x) dx < Ib~,  (x) dx = volume So . 

Since S encloses Si and So encloses S, volume Si < volume S < volume So. 
Thus the numbers (volume S )  and (x) dx both belong to the same interval 
[(volume S,), (volume So)], which has length less than E .  It follows that the 
difference between (volume S )  and Jb,~(x)dx is less than any positive number 
E ;  the only way this can be so is if the two numbers are equal. 

Supplement to Section 9.1: 
Gavalieri's Delicatessen 

The idea behind the slice method goes back, beyond the invention of calculus, 
to Francesco Bonaventura Cavalieri (1598-1647), a student of Galileo and 
then professor at the University of Bologna. An accurate report of the events 
leading to Cavalieri's discovery is not available, so we have taken the liberty of 
inventing one. 

Even this justification, as we present it, is not yet completely satisfactory. For example, do we 
get the same answer if we slice the solid a different way? The answer is yes, but the proof uses 
multiple integrals (see Chapter 17). 
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Cavalieri's delicatessen usually produced bologna in cylindrical form, so 
that the volume would be computed as 1 ~ .  radius2. length. One day, the 
casings were a bit weak, and the bologna came out with odd bulges. The scale 
was not working that day, either, so the only way to compute the price of the 
bologna was in terms of its volume. 

Cavalieri took his best knife and sliced the bologna into n very thin slices, 
each of thickness Ax, and measured the radii r ,  , r,, . . . , r,, of the slices 
(fortunately, they were round). He then estimated the volume to be 
C'i '=,~r?Ax~, the sum of the volumes of the slices. 

Cavalieri was moonlighting from his regular job as a professor at the 
University of Bologna. That afternoon, he went back to his desk and began 
the book "Geometria indivisibilium continuorum nova quandum ratione 
promota" ("Geometry shows the continuous indivisibility between new rations 
and getting promoted"), in which he stated what is now known4 as Cavalieri's 
principle : 

If two solids are sliced by a family of parallel planes in such a way that 
corresponding sections have equal areas, then the two solids have the same 
volume. 

The book was such a success that Cavalieri sold his delicatessen and 
retired to a life of occasional teaching and eternal glory. 

Honest! 

Exercises for Section 9.1 
In Exercises 1-4, use the slice method to find the 1. The solid in Fig. 9.1.15(a); each plane section is 
volume of the indicated solid. a circle of radius I. 

2. The parallelepiped in Fig. 9.1.15(b); the base is a 
rectangle with sides a and b. 

3. The solid in Fig. 9.1.15(c); the base is a figure of 
area A and the figure at height x has area 
A, = [(h - x ) / h I 2 ~ .  

4. The solid in Fig. 9.1.15(d); the base is a right 
triangle with sides b and I. 

5. Find the volume of the tent in Fig. 9.1.16. The 
plane section at height x above the base is a 
square of side i(6 - x ) ~  - i. The height of the 

a tent is 5 feet. 

Figure 9.1.15. The solids 
for Exercises 1-4. 

6. What would the volume of the tent in the previ- 
ous exercise be if the base and cross sections 
were equilateral triangles instead of squares (with 
the same side lengths)? 

7. The base of a solid S is the disk in the xy plane 
with radius 1 and center (0,O). Each section of S 
cut by a plane perpendicular to the x axis is an 
equilateral triangle. Find the volume of S .  
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8. A plastic container is to have the shape of a 
truncated pyramid with upper and lower bases 
being squares of side length 10 and 6 centime- 
ters, respectively. How high should the container 
be to hold exactly one liter (= 1000 cubic centi- 
meters)? 

9. The conical solid in Fig. 9.1.6 is to be cut by 
horizontal planes into four pieces of equal vor- 
ume. Where should the cuts be made? [Hint: 
What is the volume of the portion of the cone 
above the plane P,?] 

10. The tent in Exercise 5 is to be cut into two pieces 
of equal volume by a plane parallel to the base. 
Where should the cut be made? 
(a) Express your answer as the root of a fifth- 

degree polynomial. 
8 (b) Find an approximate solution using the 

method of bisection. 
11. A wedge is cut in a tree of radius 0.5 meter by 

making two cuts to the tree's center, one horizon- 
tal and another at an angle of 15' to the first. 
Find the volume of the wedge. 

12. A wedge is cut in a tree of radius 2 feet by 
making two cuts to the tree's center, one horizon- 
tal and another at an angle of 20" to the first. 
Find the volume of the wedge. 

13. Find the volume of the solid in Fig. 9.1.17(a). 
14. Find the volume of the solid in Fig. 9.1.17(b). 

Figure 9.1.17. Find the 
volumes of these solids. 

In Exercises 15-26, find the volume of the solid ob- 
tained by revolving each of the given regions about the 
x axis and sketch the region. 

15. The region under the graph of 3x + 1 on [O, 21. 
16. The region under the graph of 2 - (x - 1)' on 

[O, 21. 
17. The region under the graph of cos x + 1 on 

[O, 2 4 .  
18. The region under the graph of cos 2x on [0, ?r/4]. 
19. The region under the graph of x(x - 1)' on 

[1,21. 

20. The region under the graph of JG2 on 
lo, 11. 

21. The semicircular region with center (a,O) and 
radius r (assume that 0 < r < a, y > 0). 

22. The region between the graphs of and 
5 + x on [0, I]. (Evaluate the integral using geo- 
metry or the tables.) 

23. The square region with vertices (4,6), (5,6), 
(5,7), and (4,7). 

24. The region in Exercise 23 moved 2 units upward. 
25. The region in Exercise 23 rotated by 45" around 

its center. 
26. The triangular region with vertices (1, I), (2,2), 

and (3,l). 
*27. A vase with axial symmetry has the cross section 

shown in Fig. 9.1.18 when it is cut by a plane 
through its axis of symmetry. Find the volume of 
the vase to the nearest cubic centimeter. 

*28. A right circular cone of base radius r and height 
14 is to be cut into three equal pieces by parallel 
planes which are parallel to the base. Where 
should the cuts be made? 

*29. Find the formula for the volume of a doughnut 
with outside radius R and a hole of radius r. 

*30. Use the fact that the area of a disk of radius r is 
?rr2 = Y-JJ- dx to compute the area in- 
side the ellipse y2/4 + x2 = r2. 

*3 1. Prove Cavalieri's principle. 
*32. Using Cavalieri's principle, without integration, 

find a relation between the volumes of: 
(a) a hemisphere of radius 1; 
(b) a right circular cone of base radius 1 and 

height 1; 
(c) a right circular cylinder of base radius 1 and 

height 1. 
[Hint: Consider two of the solids side by side as 
a single solid. The sum of two volumes will equal 
the third.] 
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9.2 Volumes by the Shell 
Method 
A solid of revolution about they axis can be regarded as composed of cylindrical 
shells. 

In the last section, we computed the volume of the solid obtained by 
revolving the region under the graph of a function about the x axis. Another 
way to obtain a solid S is to revolve the region R under the graph of a 
non-negative function f(x) on [a, b] about they axis as shown in Fig. 9.2.1. 
We assume that 0 < a < b. 

Y =f(x) 

Figure 9.2.1. The solid S is 
obtained by revolving the 
plane region R about they 
axis. 

Figure 9.2.2. The volume of 
the cvlindrical shell is 

To find the volume of S ,  we use the method of infinitesimals. (Another 
argument using step functions is given at the end of the section.) If we rotate a 
strip of width dx and height f(x) located at a distance x from the axis of 
rotation, the result is a cylindrical shell of radius x, height f(x), and thickness 
dx. We may "unroll" this shell to get a flat rectangular sheet whose length is 
'2?ix, the circumference of the cylindrical shell (see Fig. 9.2.2). The volume of 
the sheet is thus the product of its area 2?ixf(x) and its thickness dx. The total 
volume of the solid, obtained by summing the volumes of the infinitesimal 
shells, is the integral J:2?ixf(x)dx. If we revolve the region between the graphs 
of f(x) and g(x), with f(x) < g(x) on [a, b], the height is g(x) - f(x), and so 
the volume is 257Jb,x[ g(x) - f (x)] dx. 

revolve I unroll 

27~xf(x)  dx. I 

Example 1 The region under the graph of x2 on [O,l] is revolved about they axis. Sketch 
the resulting solid and find its volume. 

Solution The solid, in the shape of a bowl, is sketched in Fig. 9.2.3. Its volume is 
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Figure 9.2.3. Find the 
volume of the "bowl-like" 
solid. 

The volume of the solid of revolution obtained by revolving about they 
axis the region under the graph of a (non-negative) function f(x) on 
[a,b] (0 < a < b) is 

If the region between the graphs of f(x) and g(x) is revolved, the 

Example 2 Find the capacity of the bowl in Example 1 .  

Solution The capacity of the bowl is the volume of the region obtained by rotating the 
region between the curves y = x2 and y = 1 on [0, 11 around they axis. 

By the second formula in the box above, with f(x) = x2 and g(x) = 1, the 
volume is 

We could have found the capacity in Example 2 by subtracting the result of 
Example 1 from the volume of the right circular cylinder with radius 1 and 
height 1, namely mr2h = m. Another way to find the capacity is by the slice 
method, using y as the independent variable. The slice at height y is a disk of 
radius x = 5, so the volume is , 

Example 3 Sketch and find the volume of the solid obtained by revolving each of the 
following regions about they axis: (a) the region under the graph of ex on 
[l,  31; (b) the region under the graph of 2x3 + 5x + 1 on [0, 11. 

Solution (a) Volume = 2mJixexdx. This integral may be evaluated by integration by 
parts to give 2m(xexl: - J:exdx) = 2m[ex(x - 1)]f = 4me3. (see Fig. 9.2.4(a)). 
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Figure 9.2.4. Find the 
volume of the shaded 
solids. 

(See Fig. 9.2.4(b)). A 

Example 4 Find the volume of the "flying saucer" obtained by rotating the region 
between the curves y = - +(l  - x4) and y = i (1  - x6) on [O, I] about the y 
axis. 

Revolve '" 
about 

Figure 9.2.5. The flying 
saucer. 

Solution See Fig. 9.2.5. The height of the shell at radius x is i (1  - x6) + a(l  - x4) 
= (5/ 12) - (x6/6) - (x4/4), so the volume is 

Example 5 A hole of radius r is drilled through the center of a ball of radius R. How 
much material is removed? 

Solution See Figure 9.2.6. The shell at distance x from the axis of the hole has height 

Figure 9.2.6. A ball with a 
hole drilled through it. 
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Example 6 The disk with radius 1 and center (4,O) is revolved around they axis. Sketch 
the resulting solid and find its volume. 

Solution 

Figure 9.2.7. The disk 
( ~ - - 4 ) ~ + ~ ~ <  l i s  
revolved about they axis. 

2JR2 - x 2 .  The shells removed have x running from 0 to r, so their total 
volume is 

Notice that if we set r = R, we get $ nR 3; we then recover the formula for the 
volume of the ball, computed by the shell method. A 

The doughnut-shaped solid is shown in Fig. 9.2.7.5 We observe that if the solid 
is sliced in half by a plane through the origin perpendicular to they axis, the 
top half is the solid obtained by revolving about they axis the region under 

the semicircle y = d l  - (x - 4)2 on the interval [3,5]. 

The volume of that solid is 

Now j\ Id- udu = 0 because the function f(u) = d m  u is odd: f(- u) 
= L f(u) SO that J'? , f(u) du is exactly the negative of Ji f (u) du. 

On the other hand, j!. du is just the area of a semicircular region 
of radius 1-that is, n/2-so the volume of the upper half of the doughnut is 
8n . (n/2) = 4n2, and the volume of the entire doughnut is twice that, or 8n2. 
(Notice that this is equal to the area n of the rotated disk times the 
circumference 8n of the circle traced out by its center (4, O).) A 

5Mathematicians call this a solid torus. The surface of this solid (an "inner tube") is a torus. 
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We conclude this section with a justification of the shell method using step 
functions. Consider again the solid S in Fig. 9.2.1. We break the region R into 
thin vertical strips and rotate them into shells, as in Fig. 9.2.8. 

What is the volume of such a shell? Suppose for a moment that f has the 

constant value ki on the interval (xi-, , xi). Then the shell is the "difference" of 
two cylinders of height ki, one with radius xi and one with radius xi-, . The 
volume of the shell is, therefore, n-x,?ki - n-x,?- ,ki = n-ki(x,? - X: ,); we may 
observe that this last expression is 12- ,2n-kix dx. 

Iff is a step function on [a, b], with partition (x,, . . . , x,) and f(x) = ki 
on (xi-, , xi), then the volume of the collection of n shells is 

Figure 9.2.8. The volume of 
a solid of revolution 
obtained by the shell 
method. 

i: Ixi 2n-kix dx; 
i = l  xi-1 

c,,/, 1 i 

I?, 
X i - 1  

but ki = f(x) on (xi-, , xi), so this is 

Ixi 2n-xf(x) dx, 
i = l  Xi-{ 

which is simply j:2n-xf(x)dx. We now have the formula 

b 
volume = 2n- i  xf (x) dx, 

which is valid whenever f(x) is a step function on [a, b]. To show that the 
same formula is valid for general f, we squeeze f between step functions above 
and below using the same argument we used for the slice method. 

Exercises for Section 9.2 
In Exercises 1-12, find the volume of the solid obtained 
by revolving each of the following regions about the y 
axis and sketch the region. 

1. The region under the graph of sin x on [0, TI. 
2. The region under the graph of cos 2x on [O,n/4]. 
3. The region under the graph of 2 - (x - on 

[O, 21. 
4. The region under the graph of Jn on 

[O, 11. 
5. The region between the graphs of \In and 

5 + x on [0, I]. 
6. The region between the graphs of sinx and x on 

10, n/21. 
7. The circular region with center (a, 0) and radius r 

(0 < r < a). 
8. The circular region with radius 2 and center 

(690). 

9. The square region with vertices (4,6), (5,6), 
(5,7), and (4,7). 

10. The region in Exercise 9 moved 2 units upward. 
11. The region in Exercise 9 rotated by 45" around 

its center. 
12. The triangular region with vertices (1, I), (2,2), 

and (3,l). 

13. The region under the graph of 6 on [0, I] is 
revolved around they axis. Sketch the resulting 
solid and find its volume. Relate the result to 
Example 5 of the previous section. 

14. Find the volume in Example 4 by the slice 
method. 

15. A cylindrical hole of radius ! is drilled through 
the center of a ball of radius 1. Use the shell 
method to find the volume of the resulting solid. 
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16. Find the volume in Exercise 15 by the slice 
method. 

17. Find the volume of the solid torus obtained by 
rotating the disk (x - 3)' + y 2  < 4 about the y 
axis. 

18. Find the volume of the solid torus obtained by 
rotating the disk x2 + (y - 5)' < 9 about the x 
axis. 

19. A spherical shell of radius r and thickness h is, 
by definition, the region between two concentric 
spheres of radius r - h/2 and r + h/2. 
(a) Find a formula for the volume V(r, h) of a 

spherical shell of radius r and thickness h. 
(b) For fixed r, what is (d/dh)V(r,h) when 

h = O? Interpret your result in terms of the 
surface area of the sphere. 

20. In Exercise 19, find (d/dr) V(r, h) when h is held 
fixed. Give a geometric interpretation of your 
answer. 

*21. (a) Find the volume of the solid torus T,,, ob- 
tained by rotating the disk with radius a and 
center (b, 0) about they axis, 0 < a < b. 

(b) What is the volume of the region between 
the solid tori Ta,b and T,,,,,, assuming 
O < a + h < b ?  

(c) Using the result in (b), guess a formula for 
the area of the torus which is the surface of 
T,,, . (Compare Exercise 19). 

*22. Let f(x) and g(y) be inverse functions with f(a) 
= a,  f(b) = p, 0 < a < b, 0 < a < p. Show that 

Interpret this statement geometrically. 
*23. Use Exercise 22 to compute the volume of the 

solid obtained by revolving the graph y = 

cos-lx, 0 < x < 1, about the x axis. 

9.3 Average Values and 
the Mean Value Theorem for Integrals 
The average height of a region under a graph is its area divided by the length of 
the base. 

The average value of a function on an interval will be defined in terms of an 
integral, just as the average or mean of a list a , ,  . . . , a, of n numbers is 
defined in terms of a sum as (l/n)Cr= ,ai. 

If a grain dealer buys wheat from n farmers, buying bi bushels from the 
ith farmer at the price of pi dollars per bushel, the average price is determined 
not by taking the simple average of the pi's, but rather by the "weighted 
average": 

- - L'r= I pib; - total dollars Paverage - 
C?=, bi total bushels ' 

If a cyclist changes speed intermittently, travelling at v, miles per hour 
from to to t, ,  v, miles per hour from tl to t,, and so on up to time t,, then the 
average speed for the trip is 

- - Cr= 10i(~i - ti- I )  - total miles 
"average 

- 
Cr= ,(ti - ti- ,) total hours 

If, in either of the last two examples, the b;s or (ti - ti- ,)'s are all equal, 
then the average value is simply the usual average of the pi's or the vi's. 

I f f  is a step function on [a, b] and we have a partition (xo,x,, . . . , x,) 
with f(x) = ki on (xi-, , xi), then the average value off on the interval [a, b] is 
defined to be 

In other words, each interval is weighted by its length. 
How can we define the average value of a function which is not a step 

function? For instance, it is common to talk of the average temperature at a 

Copyright 1985 Springer-Verlag.  All rights reserved.



434 Chapter 9 Applications of Integration 

place on earth, although the temperature is not a step function. We may 
rewrite (1) as 

and this leads us to adopt formula (2) as the definition of the average value for 
any integrable function f, not just a step function. 

Example 1 Find the average value of f(x) = x2 on [0,2]. 

Solution By definition, we have 

Example 2 Show that if v = f(t) is the velocity of a moving object, then the definition of 
ij[a,b] agrees with the usual notion of average velocity. 

Solution By the definition, 

but J:vdt is the distance travelled between t = a and t = b, so Ula,b.l = 

(distance travelled)/(time of travel), which is the usual definition of average 
velocity. A 

Example 3 Find the average value of d s  on [ -  1,1]. 

Solution By the formula for average values, Jsl - = (1: , d l  dx)/2; but 
I!. , Js dx is the area of the upper semicircle of x2 + = 1, which is f n, 

so - ,,,] = 7r/4 a 0.785. A 

Example 4 Find 

Solution x2sin(x3) = J'x2sin x3 dx 
n 0 

r3  du sin u - 3 (substituting u = x3) 
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We may rewrite the definition of the average value in the form 

and the right-hand side can be interpreted as the integral of a constant 
function: 

Geometrically, the average value is the height of the rectangle with base 
- [a, b] which has the same area as the region under the graph off  (see Fig. 
f ( . ~ ) [ O , b ,  9.3.1). Physically, if the graph off is a picture of the surface of wavy water in 

a narrow channel, then the average value off is the height of the water when it 
settles. 

An important property of average values is given in the following state- 
ment: 

- 
Figure 9.3.1. The average If m < f(x) < M for all x in [a, b], then m < f ( ~ ) [ ~ , b ]  < M. 
value is defined so that the 
area of the rectangle equals Indeed, the integrals J:m dx and J b , ~ d x  are lower and upper sums for f on 
the area under the graph. [a, b], so 
The dots on the x &is 
indicate places where the m(b - a) < f(x)dx< M(b - a). 
average value is attained. Ib 

Dividing by (b - a) gives the desired result. 
By the extreme value theorem (Section 3.5), f(x) attains a minimum value 

m and a maximum value M on [a, b]. Then m < f(x) < M for x in [a, b], so 
fola,bl lies between m and M, by the preceding proposition. By the first 
version of the intermediate value theorem (Section 3.1), applied to the interval 
between the points where f(x) = m and f(x) = M, we conclude that there is a - 
x, in this interval (and thus in [a, b]), such that f(x,) = f ( ~ ) [ ~ , b ] .  

In other words, we have proved that the average value of a continuous 
function on an interval is always attained somewhere on the interval. This 
result is known as the mean value theorem for integrals. 

Mean Value Theorem for Integrals 
Let f be continuous on [a, b]. Then there is a point x, in (a, b) such that 

Notice that in Fig. 9.3.1, the mean value is attained at three different points. 

Example 5 Give another proof of the mean value theorem for integrals by using the 
fundamental theorem of calculus and the mean value theorem for derivatives. 

Solution Let f be continuous on [a, b], and define F(x) = pJ(s)ds. By the fundamental 
theorem of calculus (alternative version), Ff(x) = f(x) for x in (a, b). (Exercise 
29 asks you to verify that F is continuous at a and b-we accept it here.) By 
the mean value theorem for derivatives, there is some x, in (a, b) such that 

Ff(xo) = 
F(b> - F(a) 

b - a  
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Substituting for F and F' in terms off, we have 

J ~ ( x )  dx - pJ(x) dx Jbef(x) dx - 
f ( ~ 0 )  = 

- - 
b - a  b - a  = f ( ~ )  [a,b] 9 

which establishes the mean value theorem for integrals. A 

Exercises for Section 9.3 
In Exercises 1-4, find the average value of the given 22. Show that if a < b < c, then 
function on the given interval. b - a  - 

1. x3 on [0, 11 2. x2 + 1 on [I, 21 7GJ[a , c1  = ( =) f ( t )  [a,bl 

3. x/(x2 + 1) on [I, 21 4. cos2x sinx on [O,a/2] c - b  - 
Calculate each of the average values in Exercises 5-16. - + (G) f ( 0  [b,cl . 

5. x310,21 6. z3 + z2 + 1[1,21 *23. How is the average of f(x) on [a, b] related to . . 
that of f(x) + k for a constant k? Explain the 

7. 1/(1 + t2)[-1,Il 8' [(x' + - + l ) I [ - ~ . ~ ~  answer in terms of a graph. 

9. 10. sin- 'x[ - *24. If f(x) = g(x) + h(x) on [a, b], show that the 
average off on [a, b] is the sum of the averages 

11. sin x cos 2x[o,,/21 12. (x2 + x - l ) ~ i n x [ ~ , , / ~  of g and h on [a, b]. 
*25. Suppose that f' exists and is continuous on [a, b]. 

13. x3 +m[l,31 14. ~ ~ [ o , I I  Prove the mean value theorem for derivatives 
- from the mean value theorem for integrals. 

15. ~ in~x ,~ , , ]  16. Inx[,,,] *26. Let f be defined on the real line and let 

17. What was the average temperature in Goose 44 = f ( x ) ~ o , ~ l .  
Brow on June 13, 1857? (See Fig. 9.3.2). (a) Derive the formula 

a'(x> = (1 /x)[f(x> - a(x>l. 
(b) Interpret the formula in the cases f(x) 

= a(x), f(x) < a(x), and f(x) > a(x). 
(c) When baseball players strike out, it lowers 

their batting average more at the beginning 
of the season than at the end. Explain why. 

*27. The geometric mean of the positive numbers 
al;. - ,a, is the nth root of the product 
a ,  - . - a,. Define the geometric mean of a posi- 

t tive function f(x) on [a,b]. [Hint: Use loga- 
rithms.] 

Midnighc *28. (a) Use the idea of Exercise 27 to prove the 
Figure 9.3.2. Temperature arithmetic-geometric mean inequality (see Ex- 
in Goose Brow on June 13, ample 12, Section 3.5). [Hint: Use the fact that 
1857. ex is concave upwards.] (b) Generalize from 

numbers to functions. 
*29. Iff  is continuous on [a, b] and F(x) = yJ(s)ds, 

18. Find the average temperature in Goose Brow verify directly using the definition of continuity 
(Fig. 9.3.2) during the periods midnight to  P.M. in Section 11.1 that F is continuous on [a, b]. 
and  P.M. to midnight. How is the average over *30. (a) At what point of the interval [O,a] is the 
the whole day related to these numbers? average value of ex achieved? 

19. (a) Find t2 + 3t + 2[o,xl as a function of x. @J (b) Denote the expression found in part (a) by 
(b) Evaluate this function of x for x = 0.1, 0.01, p(a). Evaluate p(a) for a = 1, 10, 100, 1000 
0.0001. Try to explain what is happening. and a = 0.1, 0.01, 0.0001, and 0.000001. Be - 

20. Find C O S ~ [ ~ , ~ + @ ]  as a function of 6 and evaluate sure that your answers are reasonable. 
the limit as 6 + 0. (c) Guess the limits lim,,,p(a)/a and 

21. Show that if fo[a,bl = 0 then f(b) = f(a). lima+,p(a)/a. 
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Figure 9.4.1. The plate 
balances when supported at 
its center of mass. 

2 

Figure 9.4.2. The support is 
at the center of mass when 
m,l, = m212. 

- 
X X'2 

Figure 9.4.3. The center of 
mass is at X if ml(X - x,) 
= m2(x2 - X). 

9.4 Center of Mass 437 

Center of Mass 
The center of mass of a region is the point where it balances. 

An important problem in mechanics, which was considered by Archimedes, is 
to locate the point on which a plate of some given irregular shape will balance 
(Fig. 9.4.1). This point is called the center of mass, or center of gravity, of the 
plate. The center of mass can also be defined for solid objects, and its 
applications range from theoretical physics to the problem of arranging wet 
towels to spin in a washing machine. 

Center of mass Plate 

\ / 

To give a mathematical definition of the center of mass, we begin with 
the ideal case of two point masses, m, and m,, attached to a light rod whose 
mass we neglect. (Think of a see-saw.) If we support the rod (see Fig. 9.4.2) at 
a point which is at distance I, from m, and distance I, from m,, we find that 
the rod tilts down at m, if m, I, > m212 and down at m, if m, I, < m212. It 
balances when 

One can derive this balance condition from basic physical principles, or one 
may accept it as an experimental fact; we will not try to prove it here, but 
rather study its consequences. 

Suppose that the rod lies along the x axis, with m, at x, and m, at x,. Let 
Z be the position of the center of mass. Comparing Figs. 9.4.2 and 9.4.3, we 
see that I, = X - x, and I, = x, - Z, so formula (1) may be rewritten as 
m,(Z - x,) = m2(x2 - JZ). Solving for 35 gives the explicit formula 

We may observe that the position of the center of mass is just the 
weighted average of the positions of the individual masses. This suggests the 
following generalization. 

If n masses, m,,m,, . . . , m,, are placed at the points x,,x,, . . . , x,, 
respectively, their center of mass is located at 

We may accept formula (3), as we did formula (I),  as a physical fact, or we 
may derive it (see Example 1) from formula (2) and the following principle, 
which is also accepted as a general physical fact. 
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If a body B is divided into two parts, B, and B,, with masses MI and 
M,, then the center of mass of the body B is located as if B consisted of 
two point masses: MI located at the center of mass of Bl,  and M, 
located at the center of mass of B,. 

Example 1 Using formula (2) and the consolidation principle, derive formula (3) for the 
case of three masses. 

Solution We consider the body B consisting of m,, m,, and m, as divided into Bl,  
consisting of m, and m,, and B,, consisting of m, alone. (See Fig. 9.4.4.) 

Figure 9.4.4. Center of 
mass of three points by the 
consolidation principle. 

By formula (2) we know that XI,  the center of mass of Bl,  is given by 

The mass MI of B, is m, + m,. The body B, has center of mass at X, = x, 
and mass M, = m,. Applying formula (2) once again to the point masses MI 
at XI and M, at X, gives the center of mass X of B by the consolidation 
principle: 

which is exactly formula (3) for n = 3. A 

Example 2 Masses of 10, 20, and 25 grams are located at x, = 0, x, = 5, and x, = 12 
centimeters, respectively. Locate the center of mass. 

Solution Using formula (3), we have 

X =  
lO(0) + 20(5) + 25(12) - 

10 + 20 + 25 
400 80 - 7.27 centimeters. A 
55 11 

Now let us study masses in the plane. Suppose that the masses m,, m,, . . . , m, 
are located at the points (x,, y,), . . . , (x , ,  y,). We imagine the masses as 
being attached to a weightless card, and we seek a point (X, 7 )  on the card 
where it will balance. (See Fig. 9.4.5.) 

To locate the center of mass (7, y), we note that a card which balances 
on the point (X, 7) will certainly balance along any line through (X, 7). Take, 
for instance, a line parallel to they axis (Fig. 9.4.6). The balance along this 
line will not be affected if we move each mass parallel to the line so that m,, 
m,, m,, and m, are lined up parallel to the x axis (Fig. 9.4.7). 
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Figure 9.4.5. The card 
balances at the center of 
mass. f.~,, ~ 2 )  

Figure 9.4.7. Moving the 
masses parallel to a line 
does not affect the balance 
along this line. 

Figure 9.4.6. If the card 
balances at a point, it 
balances along any line 
through that point. 

Now we can apply the balance equation (3) for masses in a line to 
conclude that the x component X of the center of mass is equal to the 
weighted average 

of the x components of the point masses. 
Repeating the construction for a balance line parallel to the x axis (we 

urge you to draw versions of Figs. 9.4.6 and 9.4.7 for this case), and applying 
formula (3) to the masses as lined up parallel to they axis, we conclude that 

These two equations completely determine the position of the center of mass. 

Example 3 Masses of 10, 15, and 30 grams are located at (0, I), (1, I), and (1,O). Find 
their center of mass. 

Solution Applying formula (4), with m, = 10, m, = 15, m3 = 30, x, = 0, x2 = 1, x3 = 1, 
y1  = 1, y2 = 1, and y, = 0, we have 
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and 

so the center of mass is located at (fi,+). A 

Example 4 Particles of mass 1, 2, 3, and 4 are located at successive vertices of a unit 
square. How far from the center of the square is the center of mass? 

Solution We take the vertices of the square to be (0, O), (1, O), (1, I), and (0,l). (See Fig. 

-"t 9.4.8.) The center is at ( 4 , i )  and the center of mass is located by formula (4): 

It is located 6 unit above the center of the square. A 

We turn now from the study of center of mass for point masses to that for flat 
Figure 9.4.8. The center of plates of various shapes. 
mass of these four weighted A flat plate is said to be of uniform density if there is a constant p such 
points is located at (f ,&). that the mass of any piece of the plate is equal to p times the area of the piece. 

The number p is called the density of the plate. We represent a plate of 
uniform density by a region R in the plane; we will see that the value of p is 
unimportant as far as the center of mass is concerned. 

A line I is called an axis of symmetry for the region R if the region R is 
taken into itself when the plane is flipped 180" around I (or, equivalently, 
reflected across I). For example, a square has four different axes of symmetry, 
a nonsquare rectangle two, and a circle infinitely many (see Fig. 9.4.9). Since a 
region will obviously balance along an axis of symmetry I, the center of mass 
must lie somewhere on I. 

Figure 9.4.9. The axes of 
symmetry of various / I '  

I 
geometric figures. ( d l  fe ( f )  

Symmetry Principle 
If I is an axis of symmetry for the plate R of uniform density, then the 
center of mass of R lies on I. 

If a plate admits more than one axis of symmetry, then the center of mass 
must lie on all the axes. In this case, we can conclude that the center of mass 
lies at the point of intersection of the axes of symmetry. Looking at parts (a) 
through (d) of Fig. 9.4.9, we see that in each case the center of mass is located 
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Figure 9.4.10. The 
"infinitesimal rectangle" 
has mass pf ( x )  dx and 
center of mass at ( x ,  f f(x)). 

at the "geometric center" of the figure. In case (e), we know only that the 
center of mass is on the altitude; in case (f), symmetry cannot be applied to 
determine the center of mass. 

Using infinitesimals, we shall now derive formulas for the center of mass 
of the region under the graph of a function f, with uniform density p. As we 
did when computing areas, we think of the region under the graph of f on 
[a, b] as being composed of "infinitely many rectangles of infinitesimal width." 
The rectangle at x with width dx has area f(x) dx and mass pf(x) dx; its center 
of mass is located at (x,+ f(x)) (by the symmetry principle) (see Fig. 9.4.10). 
[The center of mass is "really" at (x + idx,; f(x)) but since the region is 
infinitesimally thin, we use (x,+ f(x))-a more careful argument is given in the 
supplement to this section.] 

Now we apply the consolidation principle, but instead of summing, we 
replace the sums in formula (4) by integrals and arrive at the following result: 

X =  J:xpf (x) dx - J:xf(x) dx - , and 
J:pf(x)dx IY(x)dx 

y =  J: if(x)~f(x)dx - - iJ:[f(x)12dx ; (p cancels since it is constant). 
J:pf (x) dx J Y P )  dx 

Since the center of mass depends only upon the region in the plane, and 
not upon the density p, we usually refer to (X, 7 )  simply as the center of mass 
of the region. 

Center of Mass of the 
Region under a Graph 

The center of mass of a plate of uniform density represented by the 
region under the graph of a (non-negative) function f(x) on [a, b] is 
located at (X, y), where 

X =  J:xf(x) dx and J = tj:[f(x)l2dx 
I Y P )  dx JY(x)dx ' 

(5) 

Example 5 Find the center of mass of the region under the graph of x2 from 0 to 1. 

Solution By formulas (9 ,  with f(x) = x2, a = 0, and b = 1, 

so the center of mass is located at (+,A). (See Fig. 9.4.1 1.) (You can verify 
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this result experimentally by cutting a figure out of stiff cardboard and seeing 
where it balances.) A 

I is located at (a,&). 
Example 6 Find the center of mass of a semicircular region of radius 1. 

Solution We take the region under the graph of $1 on [-  1, 11. Since they axis is 
an axis of symmetry, the center of mass must lie on this axis; that is, K = 0. 

' t  
(You can also calculate JLlx$- dx and find it to be zero.) By equa- 
tion (5),  

1 1  ZJ- I (1 - x2) dx 

I ; The denominator is the area a /2  of the semicircle.. The numerator is 
1 1  TJ-l( l  - x2)dx = i [x  - x3/3]111 = 3 ,  SO 

Figure 9.4.12. The center of 
jj=--.-- mass of the semicircular a/2  I 3  - 371 -0.42, 

region is located at 
(0,4/34. and so the center of mass is located at (0,4/3m) (see Fig. 9.4.12). a 

Using the consolidation principle, we can calculate the center of mass of a 
region which is not under a graph by breaking it into simpler regions, as we 
did for areas in Section 4. 

Example 7 Find the center of mass of the region consisting of a disk of radius 1 centered 
at the origin and the region under the graph of sinx on (2m, 377). 

Solution The center of mass of the disk is at (O,O), since the x and y axes are both axes 
of symmetry. For the region under the graph of sinx on [2n, 3n], the line 
x = 4 a is an axis of symmetry. To find they coordinate of the center of mass, 
we use formula (5) and the identity sin2x = (1 - cos2x)/2 to obtain 

iJi:sin2x dx - f (x/2 - sin2x/4)1;: (1/2) - a/2  - - - 
2 

= M 0.393. 
Ji:sin x dx - cos x 1;: 8 

(Notice that this region is more "bottom heavy" than the semicircular region.) 
By the consolidation principle, the center of mass of the total figure is the 

same as one consisting of two points: one at (0,O) with mass p a  and one at 
(4 m, m/8) with mass 2p. The center of mass is, therefore, at (X, jj), where 

pa.O+2p.+m 
K =  - -- 5a and J =  p a .  0 + 2p. n/8 - a/4  -- 

Pn + ~2 2 + a  Pn + ~2 2 + n '  

Hence (X, J) is approximately (3.06,0.15) (see Fig. 9.4.13); a 
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Center of mass Center of mass 
of total region of this part 

Figure 9.4.13. The center of 
2 n 3 n mass is found by the 

X 

consolidation principle. 

Supplement to Section 9.4: 
A Derivation of the Center of Mass Formula (5) Using Step 
Functions 

We begin by considering the case in which f is a step function on [a, b] with 
f ( x )  > 0 for x in [a,  b].  Let R be the region under the graph of f and let 
(x , ,  . . . , x,) be a partition of [a, b] such that f is a constant ki on ( x i - ,  ,x i ) .  
Then R is composed of n rectangles R l ,  . . . , R, of areas ki(xi - xi- ,) = kiAxi 
and masses pkiAxi = mi. By the symmetry principle, the center of mass of Ri is 
located at (Xi, yi), where Xi = 4 ( x i - ,  + xi) andyi = 4 ki .  (See Fig. 9.4.14.) 

Figure 9.4.14. The center of 
mass of the shaded region 
is obtained by the 

I II consolidation principle. 
a 

Now we use the consolidation principle, extended to a decomposition into 
n pieces, to conclude that the center of mass of R is the same as the center of 
mass of masses m, ,  . . . , m, placed at the points ( E l ,  y,), . . . , (JE,, 7,). By 
formula (4), we have, first of all, 

We wish to rewrite the numerator and denominator as integrals, so that 
we can eventually treat the case where f is not a step function. The denomina- 
tor is easy to handle. Factoring out p gives pC',', ,kiAxi, which we recognize as 
p J g ( x ) d x ,  the total mass of the.plate. The numerator of X equals 

We notice that ki(x? - x:,) = I:-,2kixdx, which we can also write as 
,2xf ( x )  dx, silice f ( x )  = ki on ( x i - ,  , xi). Now the numerator of X becomes 

b 
p 2 IXi 2xf ( x )  dx = I plb2xf  ( x )  dx = PL xf ( x )  dx, 

2 i = 1  x i - ,  2 

and we have 
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To find they coordinate of the center of mass, we use the second half of 
formula (4): 

The denominator is the total mass pJ2(x)dx, as before. The numerator is 
3pC7= ,k?Axi, and we recognize C?= ,k?Axi as the integral J: [ f(x)12 dx of the 
step function [ f(x)I2. Thus, 

We have derived the formulas for 3 and7 for the case in which f(x) is a 
step function; however, they make sense as long as f(x), xf(x), and [ f(x)12 are 
integrable on [a, b]. As usual, we carry over the same formula to general f, so 
formulas (5) are derived. 

Exercises for Section 9.4 
1. Redo Example 1 by choosing B ,  to consist of m, 

alone and B2 to consist of m2 and m3. 
2. Assuming formula (2) and the consolidation 

principle, derive formula (3) for the case of four 
masses by dividing the masses into two groups of 
two masses each. 

3. Using formulas (2) and (3) for two and three 
masses, and the consolidation principle, derive 
formula (3) for four masses. 

4. Assume that you have derived formula (3) from 
formula (2) and the consolidation principle for n 
masses. Now derive formula (3) for n + 1 masses. 

5. Masses of 1, 3, 5, and 7 units are located at the 
points 7, 3, 5, and 1, respectively, on the x axis. 
where is the center of mass? 

6. Masses of 2, 4, 6, 8, and 10 units are located at 
the points x,  = 0, x2 = 1, x3 = 3, x4 = - 1, and 
x, = - 2  on the x axis. Locate the center of 
mass. 

7. For each integer i from 1 to 100, a point of mass 
i is located at the point x = i. Where is the center 
of mass? (See Exercise 41 (a), Section 4.1 .) 

8. Suppose that n equal masses are located at the 
points 1,2,3, . . . , n on a line. Where is their 
center of mass? 

In Exercises 9-12, find the center of mass for the given 
arrangement of masses. 

9. 10 grams at (1,O) and 20 grams at (1,2). 
10. 15 grams at (- 3,2) and 30 grams at (4,2). 
11. 5 grams at (1, I), 8 grams at (3,2), and 10 grams 

at (0,O). 
12. 2 grams at (4,2), 3 grams at (3,2), and 4 grams at 

(53). 

13. (a) Equal masses are placed at the vertices of an 
equilateral triangle whose base is the segment 
from (0,O) to (1,O). Where is the center of mass? 

(b) The mass at (0,O) is doubled. Where is the 
center of mass now? 

14. Masses of 2, 3, 4, and 5 kilograms are placed at 
the points (1,2), (1,4), (3,5), and (2,6), respec- 
tively. Where should a mass of 1 kilogram be 
placed so that the configuration of five masses 
has its center of mass at the origin? 

15. Verify the consolidation principle for the situa- 
tion in which four masses in the plane are di- 
vided into two groups containing one mass and 
three masses each. (Assume that formula (3) 
holds for n = 3.) 

16. Equal masses are placed at the points (x,, y,), 
(xz, y2), and (x3, y3). Show that their center of 
mass is at the intersection point of the medians 
of the triangle at whose vertices the masses are 
located. 

Find the center of mass of the regions in Exercises 
17-22. 

17. The region under the graph of 4/x2 on [l, 31. 
18. The region under the graph of 1 + x2 + x4 on 

[ - 1,lI. 
19. The region under the graph of I/- on [0, 11. 

20. The region under the graph of Jw on 

t - a, a]. 
21. The triangle with vertices at (0,0), (0,2), and 

(420). 
22. The triangle with vertices at (1,0), (4,0), and 

(2,3). 

23. If, in formula (3), we have a < xi < b for all xi, 
show that a < x < b as well. Interpret this state- 
ment geometrically. 

24. Let a mass mi be placed at position xi on a line 
(i = 1, . . . , n). Show that the function f(x) 
= x:= ,mi(x - xi)2 is minimized when x is the 
center of mass of the n particles. 
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25. Suppose that masses mi are located at points xi where 
on the line and are moving with velocity ui 
= dx,/dt ( i  = 1, . . . , n). The total momentum of x = 

g(x> - f ( x ) l  dx , and 
the particles is defined to be P = m,u, + I 2  g ( x )  - f(x)I  dx 
m2v2 + . . . + mnun. Show that P = Mu, where 
M is the total mass and u is the velocity of the +I;[  g ( x )  + f ( x>l[g(x> - f ( x ) l  dx 

B =  
center of mass (i.e., the rate of change of the I:[ id.> - f ( x ) ]  dx 
position of the center of mass with respect to 
time). 

26. A mass mi is at position xi = J ( t )  at time t. Show 
that if the force on mi is F,(t), and F,(t) + F2(t) 
= 0, then the center of mass of m,  and m2 moves 
with constant velocity. 

27. From a disk of radius 5, a circular hole with 
radius 2 and center 1 unit from the center of the 
disk is cut out. Sketch and find the center of 
mass of the resulting figure. 

28. Suppose that f ( x )  < g(x )  for all x in [a, b].  Show 
that the center of mass of the region between the 
graphs o f f  and g on [a, b] is located at (X, Y) ,  

29. Find the center of mass of the region between 
the graphs of sin x and cos x on [O, ~ / 4 ] .  [Hint: 
Find the center of mass of each infinitesimal 
strip making up the region, or use Exercise 28.1 

30. Find the center of mass of the region between 
the graphs of - x 4  and x2 on [ -  1,1]. (See the 
hint in Exercise 29.) 

*3 1. Find the center of mass of the triangular region 
with vertices ( x , ,  yl) , .(x2,  y2), and (x,, y3). (For 
convenience, you may assume that x ,  < x2 < x3, 
y I  < y,, and y2 < ys.) Compare with Exercise 
16. 

9.5 Energy, Power, and 
Work 
Energy is the integral of power over time, and work is the integral of force over 
distance. 

Energy appears in various forms and can often be converted from one form 
into another. For instance, a solar cell converts the energy in light into 
electrical energy; a fusion reactor, in changing atomic structures, transforms 
nuclear energy into heat energy. Despite the variety of forms in which energy 
may appear, there is a common unit of measure for all these forms. In the 
MKS (meter-kilogram-second) system, it is the joule, which equals 1 kilogram 
meter;? per second2. 

Energy is an "extensive" quantity. This means the following: the longer a 
generator runs, the more electrical energy it produces; the longer a light bulb 
burns, the more energy it consumes. The rate (with respect to time) at which 
some form of energy is produced or consumed is called the power output or 
input of the energy conversion device. Power is an instantaneous or "intensive" 
quantity. By the fundamental theorem of calculus, we can compute the total 
energy transformed between times a and b by integrating the power from a 
to b. 

Power is the rate of change of energy with respect to time: 

The total energy over a time period is the integral of power with respect 
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A common unit of measurement for power is the watt, which equals 1 joule 
per second. One horsepower is equal to 746 watts. The kilowatt-hour is a unit of 
energy equal to the energy obtained by using 1000 watts for 1 hour (3600 
seconds)-that is, 3,600,000 joules. 

Example 1 The power output (in watts) of a 60-cycle generator varies with time (mea- 
sured in seconds) according to the formula P = ~~sin'(120nt), where Po is the 
maximum power output. (a) What is the total energy output during an hour? 
(b) What is the average power output during an hour? 

Ssiution (a) The energy output, in joules, is 

Using the formula sin20 = (1 - cos 28)/2, we find 

(b) The average power output is the energy output divided by the time (see 
Section 9.3), or 1800 P,,/3600 = $Po; in this case, half the maximum power 
output. A 

A common form of energy is mechanical energy-the energy stored in the 
movement of a massive object (kinetic energy) or the energy stored in an 
object by virtue of its position (potential energy). The latter is illustrated by the 
energy we can extract from water stored above a hydroelectric power plant. 

We accept the following principles from physics: 

1. The kinetic energy of a mass m moving with velocity v is $ mu2. 
2. The (gravitational) potential energy of a mass m at a height h is mgh (here g 

is the gravitational acceleration; g = 9.8 meters/(second)' = 32 feet/(sec- 
ond)'. 

The total force on a moving object is equal to the product of the mass m 
and the acceleration dv/dt = d2x/dt2. The unit of force is the newton which is 
1 kilogram meter per second2. If the force depends upon the position of the 
object, we may calculate the variation of the kinetic energy K = f mv2 with 
position. We have , 

Applying the fundamental theorem of calculus, we find that the change AK of 
kinetic energy as the particle moves from a to b is J:~dx. Often we can divide 
the total force on an object into parts arising from identifiable sources 
(gravity, friction, fluid pressure). We are led to define the work W done by a 
particular force F on a moving object (even if there are other forces present) 
as W = J:Fdx. Note that if the force F is constant, then the work done is 
simply the product of F with the displacement Ax = b - a. Accordingly, 
1 joule equals 1 newton-meter. 
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Example 2 

Figure 9.5.1. How much 
work did the weight-lifter 
do? 

Solution 

Example 3 

Solution 

The work done by a force on a moving object is the integral of the force 
with respect to position: 

If the force is constant, 

Work = Force x Displacement. 

If the total force F is a sum F, + . . . + F,,, then we have 

AK = (F, + , . + ~ , , ) d x = L ~ ~ , d x +  . - .  +Lb~, ,dx .  Ib  
Thus the total change in kinetic energy is equal to the sum of the works done 
by the individual forces. 

The acczleration of gravity near the earth is g = 9.8 meters/(se~ond)~. How 
much work does a weight-lifter do in raising a 50-kilogram barbell to a height 
of 2 meters? (See Figure 9.5.1 .) 

25 kg 25 kg 

We let x denote the height of the barbell above the ground. Before and after 
the lifts, the barbell is stationary, so the net change in kinetic energy is zero. 
The work done by the weight-lifter must be the negative of the work done by 
gravity. Since the pull of gravity is downward, its force is -9.8 meters per 
second2 x 50 kilograms = -490 kilograms . meters per second2 = - 490 new- 
tons; Ax = 2 meters, so the work done by gravity is - 980 kilograms . meters2 
per second2 = -980 joules. Thus the work done by the weight-lifter is 980 
joules. (If the lift takes s seconds, the average power output is (980/s) watts.) 

A 

Show that the power exerted by a force F on a moving object is Fv, where v is 
the velocity of the object. 

Let E be the energy content. By our formula for work, we have AE = Jb,Fdx, 
so dE/dx = F. To compute the power, which is the time derivative of E, we 
use the chain rule: 

(In pushing a child on a swing, this suggests it is most effective to exert your 
force at the bottom of the swing, when the velocity is greatest. Are there any 
complicating factors?) A 
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Example 4 A pump is to empty the conical tank of water shown in Fig. 9.5.2. How much 
energy (in joules) is required for the job? (A cubic meter of water has mass lo3 
kilograms.) 

Figure 9.5.2. To calculate 
the energy needed to empty 
the tank, we add up the 
energy needed to remove 
slabs of thickness dx. 

Solution Consider a layer of thickness dx at depth x, as shown in Fig. 9.5.2. By similar 
triangles, the radius is r = &(lo - x), so the volume of the layer is given by 
n -&(lo  - x ) ~ ~ x  and its mass is lo3. .rr. &(lo - x ) ~ ~ x  = 90n(10 - ~ ) ~ d x .  
To lift this layer x meters to the top of the tank takes 90v(10 - ~ ) ~ d x .  g . x 
joules of work, where g = 9.8 meters per second2 is the acceleration due to 
gravity (see Example 2). Thus, the total work done in emptying the tank is 

M 2.3 x lo6 joules. A 

@ Example 5 The pump which is emptying the conical tank in Example 4 has a power 
output of lo5 joules per hour (i.e., 27.77 watts). What is the water level at the 
end of 6 minutes of pumping? How fast is the water level dropping at this 
time? 

Solution The total energy required to pump out the top h meters of water is 

At .the end of 6 minutes (& hour), the pump has produced lo4 joules of 
energy, so the water level is h meters from the top, where h is the solution of 

Solving this numerically by the method of bisection (see Section 3.1) gives 
h m 0.27 meter. 

At the end of t hours, the total energy output is 105t joules, so 

where h is the amount pumped out at time t. Differentiating both sides with 
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respect to t gives 

when h = 0.27, this is 1.41 meters per hour. p 

Supplement to Section 9.5: 
integrating Sunshine 

We will now apply the theory and practice of integration to compute the total 
amount of sunshine received during a day, as a function of latitude and time 
of year. If we have a horizontal square meter of surface, then the rate at which 
solar energy is received by this surface-that is, the intensity of the solar 
radiation-is proportional to the sine of the angle A of elevation of the sun 
above the h ~ r i z o n . ~  Thus the intensity is highest when the sun is directly 
overhead (A = m/2) and reduces to zero at sunrise and sunset. 

The total energy received on day T must therefore be the product of a 
constant (which can be determined only by experiment, and which we will 
ignore) and the integral E = J:b((T),sin~ dt, where t is the time of day (mea- 
sured in hours from noon) and t,(T) and t,(T) are the times of sunrise and 
sunset on day T. (When the sun is below the horizon, although sinA is 
negative, the solar intensity is simply zero.) 

We presented a formula for sinA (formula (1) in the Supplement to 
Chapter 5, to be derived in the Supplement to Chapter 14), and used it to 
determine the time of sunset (formula (3) in the Supplement to Chapter 5). 
The time of sunrise is the negative of the time of sunset, so we have7 

E = J-Sp A dt, 

where 

sin A = cos I 1 - sin2a cos2 cos - + sin Isin a cos d ( 3 6 5 )  (%I 
and 

24 I J 
sin a cos(2nT/365) 

S =  -cos-' -tan1 
277 

1 - sin2a cos2(2v~/365) 

Here a w 23.5" is the inclination of the earth's axis from the perpendicular to 
the plane of the earth's orbit; I is the latitude of the point where the sunshine 
is being measured. 

The integration will be simpler than you may expect. First of all, we 
simplify notation by writing k for the expression sina cos(2~T/365), which 
appears so often. Then we have 

E = J-ss [ cos l\im cos + (sin 1 ) k dl ( 24 ) 1 
S 

= cos I J iTF l_?s( ) dt + (sin I )kJ dt. 
-S 

We will justify this assertion in the Supplement to Chapter 14. We also note that, strictly 
speaking, it applies only if we neglect absorption by the atmosphere or assume that our surface is 
at the top of the atmosphere. 

All these calculations assume that there is a sunrise and sunset. In the polar regions during the 
summer, the calculations must be altered (see Exercise 5 below). 
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Integration gives 

= 24 cos I JCP sin 2 + 2Sk sin I. 
57 

The expression sin(2mS/24) can be simplified. Using the formula 

cos(2nS/24) = - ( t a n l ) ( k / J m ) ,  

we get 

2.s - JT - (tan21) k2 
sin - - 1 - cos - - 

24 1 - k2 

and so, finally, we get, 

Since both k and I/- appear, we can do even better by writing k = sinD 
(the number D is important in astronomy-it is called the declination), and we 
get 

cos Id1 - sec21 sin2D + sin 1 sin D cos- I ( -  tan I tan D ) . 
57 I 

Since we have already ignored a constant factor in E, we will also ignore the 
factor 24/v. Incorporating cosl into the square root, we obtain as our final 
result 

E =J- + s i n l s i n ~ c o s - I ( - t a n l t a n ~ ) ,  (3) 

where sin D = sin a cos(2nT/365). 
Plotting E as a function of I for various values of T leads to graphs like 

those in Figs. 3.5.4 and 9.5.3. 

Example When does the equator receive the most solar energy? The least? 

Solution At the equator, I = 0, so we have 

We see by inspection that E is largest when cos2(2n~/365) = &that is, when 
T/365 = $ or $; that is, on the first days of fall and spring: on these days 
E = 1. We note that E is smallest on the first days of summer and winter, 
when cos2(2v/365) = 1 and we have E = = cosa = cos23.5' = 

0.917, or about 92% of the maximum value. A 
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Using this example we can standardize units in which E can be measured. 
One unit of E is the total energy received on a square meter a t  the equator o n  
the first day of spring. All other energies may be expressed in terms of this 
unit. 

Figure 9.5.3. Computer- 
generated graph of the 
daily sunshine intensity on 
the earth as a function of 
day of the year and 
latitude. 

Exercises for the Supplement to Section 9.5 
1. Compare the solar energy received on June 21 at 

the Arctic Circle (1 = 90' - a) with that received 
at the equator. 

2. What would the inclination of the earth need to 
be in order for E on June 21 to have the same 
value at the equator as at the latitude 90' - a? 

3. (a) Express the total solar energy received over a 
whole year at latitude 1 by using summation nota- 
tion. (b) Write down an integral which is approxi- 
mately equal to this sum. Can you evaluate it? 

4. Simplify the integral in the solution of Exercise 
3(b) for the cases 1 = 0 (equator) and 1 = 90" - a 
(Arctic Circle). In each case, one of the two terms 
in the integrand can be integrated explicitly: find 
the integral of this term. 

5. Find the total solar energy received at a latitude in 
the polar region on a day on which the sun never 
sets. 

6. How do you think the climate of the earth would 
be affected if the inclination a were to become: 
(a) lo0? (b) 40°? (In each case, discuss whether 
the North Pole receives more or less energy during 
the year than the equator-see Exercise 5.) 

7. Consider equation (3) for E. For D = n / 8 ,  com- 
pute dE/dl  at 1 = ~/4. Is your answer consistent 
with the graph in Fig. 9.5.3 (look in the plane of 
constant T)? 

8. Determine whether a square meter at the equator 
or at the North Pole receives more solar energy: 
(a) during the month of February, (b) during the 
month of April, (c) during the entire year. 

Copyright 1985 Springer-Verlag.  All rights reserved.



452 Chapter 9 Applications of Integration 

Exercises for Section 9.5 
1. The power output (in watts) of a 60-cycle genera- 

tor is P = 1050sin2(120at), where t is measured 
in seconds. What is the total energy output in an 
hour? 

2.. A worker, gradually becoming tired, has a power 
output of 30eP2' watts for 0 g t g 360, where t 
is the time in seconds from the start of a job. 
How much energy is expended during the job? 

3. An electric motor is operating with power 15 + 
2sin(ta/24) watts, where t is the time in hours 
measured from midnight. How much energy is 
consumed in one day's operation? 

4. The power output of a solar cell is 25 sin(at/ 12) 
watts, where t is the time in hours after 6 A.M. 

How many joules of energy are produced be- 
tween 6 A.M. and 6 P.M? 

In Exercises 5-8, compute the work done by the given 
force acting over the given interval. 

5. F = 3 x ; O < x <  1. 
6. F = k/x2; 1 g x g 6 (k a constant). 
7. ~ = 1 / ( 4 + x ~ ) ;  O <  x g  1. 
8. F = sin3x cos2x; 0 < x < 2. [Hint: Write sin3x 

= sin x(1 - cos2x).] 

9. How much power must be applied to raise an 
object of mass 1000 grams at a rate of 10 meters 
per second (at the Earth's surface)? 

10. The gravitational force on an object at a distance 
r from the center of the earth is k/r2, where k is 
a constant. How much work is required to move 
the object: 
(a) From r = 1 to r = lo? 
(b) From r = 1 to r = 1000? 
(c) From r = 1 to r = 10,000? 
(d) From r = 1 to "r = a"? 

11. A particle with mass 1000 grams has position 
x = 3t2 + 4 meters at time t seconds. (a) What is 
the kinetic energy at time t? (b) What is the rate 
at which power is being supplied to the object at 
time t = lo? 

12. A particle of mass 20 grams is at rest at t = 0, 
and power is applied at the rate of 10 joules per 
second. (a) What is the energy at time t? (b) If all 
the energy is kinetic energy, what is the velocity 
at time t? (c) How far has the particle moved at 
the end of t seconds? (d) What is the force on the 
particle at time t? 

13. A force F(x) = -3x newtons acts on a particle 
between positions x = 1 and x = 0. What is the 
change in kinetic energy of the particle between 
these positions? 

14. A force F(x) = 3x sin(ax/2) newtons acts on a 
particle between positions x = 0 and x = 2. What 
is the increase in kinetic energy of the particle 
between these positions? 

15. (a) The power output of an electric generator is 
25 cos2(120at) joules per second. How much en- 

ergy is produced in 1 hour? (b) The output of the 
generator in part (a) is converted, with 80% effi- 
ciency, into the horizontal motion of a 250-gram 
object. How fast is the object moving at the end 
of 1 minute? 

16. The generator in Exercise 15 is used to lift a 
500-kilogram weight and the energy is converted 
via pulleys with 75% efficiency. How high can it 
lift the weight in an hour? 

Exercises 17-20 refer to Figure 9.5.4. 
17. How much energy is required to pump all the 

water out of the swimming pool? 
18. Suppose that a mass equal to that of the water in 

the pool were moving with kinetic energy equal 
to the result of Exercise 17. What would its 
velocity be? 

19. Repeat Exercise 17 assuming that the pool is 
filled with a liquid three times as dense as water. 

20. Repeat Exercise 18 assuming that the pool is 
filled with a liquid three times as dense as water. 

Figure 9.5.4. How much 
energy is required to empty 
this pool of water? 

21. Suppose that a spring has a natural length of 10 
centimeters, and that a force of 3 newtons is 
required to stretch it to 15 centimeters. How 
much work is needed to compress the spring to 5 
centimeters? 

22. If all the energy in the compressed spring in 
Exercise 21 is used to fire a ball with a ma% 

lograms, how fast will the ball travel? 
23. How much work is required to fill the tank in 

Figure 9.5.5 with water from ground level? 
24. A solid concrete monument is built in the pyra- 

mid shape of Fig. 9.5.6. Assume that the concrete 
weighs 260 pounds per cubic foot. How much 
work is done in erecting the monument? ( g  = 32 
feet per second2; express your answer in units of 
pound-feet . ) 
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I0 meters 

111 d tank? 

I+-- 10 feet -I 
Figure 9.5.6. How much 
energy is needed to erect 
this monument? 

Review Exercises for Chapter 9 
In Exercises 1-4, find the volume of the solid obtained 
by rotating the region under the given graph about (a) 
the x axis and (b) they axis. 

1. y = s i n x , O <  x < a 
2. y=3s in2x ,O < x < a / 4  
3. y =  ex, 0 < x < ln2 
4. y =5e2", 0 < x < In4 

5. A cylindrical hole of radius 3 is drilled through 
the center of a ball of radius 1. What is the 
volume of the resulting solid? 

6. A wedge is cut in a tree of radius I meter by 
making two cuts to the center, one horizontally, 
and one at an angle of 20" to the first. Find the 
volume of the wedge. 

7. Find the volume of the "football" whose dimen- 
sions are shown in Fig. 9.R.l. The two arcs in the 
figure are segments of parabolas. 

Figure 9.R.1. Find the 
volume of the football. 

8. Imagine the "football" in Fig. 9.R.1, formed by 
revolving a parabola, to be solid. A hole with 
radius 1 inch is drilled along the axis of symme- 
try. How much material is removed? 

In Exercises 9-12, find the average value of each func- 
tion on the stated interval. 

13. If f(x)dx = 4, what is the average value of 
g(x) = 3 f(x) on [0,2]? 

14. If f(x) = kg(ex) on [a, b], how is the average off 
on [a, b] related to that of g on [ac, be]? 

a 15. Show that for some x in [O,a], ------- is 
2 + cosx 

57 d6 equal to J -- ,, 2+cos6  
16. (a) Prove that 

(b) Prove that i 1 [ d t / m ]  = sin6 for some 6, 

a / 4  < 6 < a/2: 
In Exercises 17-22, let p be the average value off  on 
[a, b]. Then the average value of [ f(x) - p12 on [a, b] is 
called the variance off on [a, b], and the square root of 
the variance is called the standard deviation off on [a, b] 
and is denoted a. Find the average value, variance, and 
standard deviation of each of the following functions 
on the interval specified. 

17. x2 on [0, 11 
18. 3 + x2 on [0, I] 
19. xeX on [O,l] 
20. sin 2x on [0,4a] 
21. f (x)= 1 on [O,1] and 2 on(1,2]. 

(2  on[O,lI 

23. Let the region under the graph of a positive 
function f(x), a < x < b, be revolved about the 
x axis to form a solid S. Suppose this solid has a 
mass density of p(x) grams per cubic centimeter 
at a distance x along the x axis. (a) Find a 
formula for the mass of S. (b) If f(x) = x2, a = 0 
and b = 1, and p(x) = (1 + x4), find the mass 
of S. 

24. A rod has linear mass density y(x) grams per 
centimeter at the point x along its length. If the 
rod extends from x = a to x = b, find a formula 
for the location of the rod's center of mass. 

In Exercises 25-28, find the center of mass of the 
region under the given graph on the given interval. 

25. y = x4 on [O, 21 26. y = x3 + 2 on [O,1] 
27. y = ln(1 + x) on [O,1] 28. y = ex on [I, 21 
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29. Find the center of mass of the region between 
the graphs of y = x3 and y = - x2 between x = 0 
and x = 1 (see Exercise 28, Section 9.4). 

30. Find the center of mass of the region composed 
of the region under the graph y = sinx, 0 < x 
< m, and the circle with center at (5,O) and 
radius 1. 

31. Over a time period 0 < t < 6 ( t  measured in 
minutes), an engine is consuming power at a rate 
pf 20 + 5te-' watts. What is (a) the total energy 
consumed? (b) The average power used? 

32. Water is being pumped from a deep, irregularly 
shaped well at a constant rate of 3f cubic meters 
per hour. At a certain instant, it is observed that 
the water level is dropping at a rate of 1.2 meters 
per hour. What is the cross-sectional area of the 
well at that depth? 

33. A force F(x) = 30sin(mx/4) newtons acts on a 
particle between positions x = 2 and x = 4. What 
is the increase in kinetic energy (in joules) be- 
tween these positions? 

34. The engine in Fig. 9.R.2 is using energy at a rate 
of 300 joules per second to lift the weight of 600 
kilograms. If the engine operates at 60% effi- 
ciency, at what speed (meters per second) can it 
raise the weight? 

Figure 9.R.2. The engine 
for Problem 34. 

35. Find a formula for the work required to empty a 
tank of water which is a solid of revolution about 
a vertical axis of symmetry. 

36. How much work is required to empty the tank 
shown in Fig. 9.R.3? [Hint: Use the result of 
Exercise 35.1 

Circular rim 

Parabola 

Figure 9.R.3. How much 
energy is needed to empty 
the tank? 

37. The pressure (force per unit area) at a depth h 
below the surface of a body of water is given by 
p = pgh = 9800h, measured in newtons per 
square meter. (This formula derives from the fact 
that the force needed to support a column of 
water of cross-sectional area A is (volume) X 

(density) x (g) = Ahpg, so the force per unit area 
is pgh, where p = lo3 kilograms per cubic meter, 
and g = 9.8 meters per second per second). 
(a) For the dam shown in Fig. 9.R.4(a), show 

that the total force exerted on it by the 
water is F = fJ:pg[f(x)]2dx. [Hint: First 
calculate the force exerted on a vertical rec- 
tangular slab.] 

(b) Make up a geometric theorem relating F to 
the volume of a certain solid. 

(c) Find the total force exerted on the dam 
whose face is shown in Fig. 9.R.4(b). 

L-4 
50 m 

Figure 9.R.4. Calculate the 
(b) Dam face force on the dam. 

38. (a) Pappus' theorem for volumes. Use the shell 
method to show that if a region R in the xy 
plane is revolved around the y axis, the 
volume of the resulting solid equals the area 
of R times the circumference of the circle 
obtained by revolving the center of mass of 
R around they axis. 

(b) Use Pappus' theorem to do Exercise 21(a) in 
Section 9.2. 

(c) Assuming the formula V = 4 mr3 for the vol- 
ume of a ball, use Pappus's theorem to find 
the center of mass of the semicircular region 
x ~ + ~ ~ <  r2 ,x  > O .  

*39. See the instructions for Exercises 17-22. 
(a) Suppose that f(t) is a step function on [a, b], 

with value ki on the interval (ti- , ti) belong- 
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ing to a partition (to,t,,  . . . , t,). Find a 
formula for the standard deviation o f f  on 
[a, bl. 

(b) Simplify your formula in part (a) for the 
case when all the Ati7s are equal. 

(c) Show that if the standard deviation of a step 
function is zero, then the function has the 
same value on all the intervals of the parti- 
tion; i.e., the function is constant. 

(d) Give a definition for the standard deviation 
of a list a , ,  . . . , a, of numbers. 

(e) What can you say about a list of numbers if 
its standard deviation is zero? 

*40. (a) Prove, by analogy with the mean value theo- 
rem for integrals, the second mean value the- 
orem: Iff and g are continuous on [a, b] and 
g(x) > 0, for x in [a, b], then there is a 
point to in [a, b] such that 

Review Exercises for Chapter 9 455 

(b) Show that the mean value theorem for inte- 
grals is a special case of the result in part 
( 4 .  

(c) Show by example that the conclusion of part 
(a) is false without the assumption that g(t) 
> 0. 

*41. Show that iff is an increasing continuous func- 
tion on [a, b], the mean value theorem for inte- 
grals implies the conclusion of the intermediate 
value theorem. 

*42. Show that in the context of Exercise 35, the work 
needed to empty the tank equals Mgh, where M 
is the total mass of water in the tank and h is the 
distance of the center of mass of the tank below 
the top of the tank. 

*43. Let f(x) > 0 for x in [a, b]. Find a relation be- 
tween the average value of the logarithmic deriv- 
ative f'(x)/f(x) off on [a, b] and the values off 
at the endpoints. 
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Chapter 10 

Further Techniques 
and App icat ions 

Some simple geometric problems require advanced methods of integration. 

Besides the basic methods of integration associated with reversing the differen- 
tiation rules, there are special methods for integrands of particular forms. 
Using these methods, we can solve some interesting length and area problems. 

10.1 Trigonometric 
Integrals 
The key to evaluating many integrals is a trigonometric identity or substitution. 

The integrals treated in this section fall into two groups. First, there are some 
purely trigonometric integrals that can be evaluated using trigonometric 
identities. Second, there are integrals involving quadratic functions and their 
square roots which can be evaluated using trigonometric substitutions. 

We begin by considering integrals of the form 

J'sinmx cosnx dx, 

where m and n are integers. The case n = 1 is easy, for if we let u = sinx, we 
find 

J' 
I sinm + ' (x) 

J'sinmxcosxdx= umdu=- + C =  
m + l  

+ C  
m + l  

(or lnlsinxl + C, if m = - 1). The case m = 1 is similar: 

c0sn + l(x) 
Jsin x cosnx dx = - 

n + l  
+ C  

(or - lnlcosxl + C, if n = - 1). If either m or n is odd, we can use the identity 
sin2x + cos2x = 1 to reduce the integral to one of the types just treated. 

Example 1 Evaluate Jsin2x cos3x dx. 

Solution Jsin2x cos3x dx = Jsin2x cos2x cosx dx = J(sin2x)(l - sin2x)cos x dx, which can 
be integrated by the substitution u = sinx. We get 
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If m = 2k and n = 21 are both even, we can use the half-angle formulas 
sin2x = (1 - cos2x)/2 and cos2x = (1 + cos2x)/2 to write 

where y = 2x. Multiplying this out, we are faced with a sum of integrals of the 
form Jcosmydy, with m ranging from zero to k + I. The integrals for odd m 
can be handled by the previous method; to those with even m we apply the 
half-angle formula once again. The whole process is repeated as often as 
necessary until everything is integrated. 

Example 2 Evaluate Jsin2x cos2x dx. 

Solution J sin2x cos2x dx = 1 + Y ~ x ) ~ ,  

To evaluate Jsinmx cosnx dx: 

1. If m is odd, write m = 2k + 1, and 

k 
= J ( 1 - cos2x) cosnx sin x dx. 

Now integrate by substituting u = cosx. 
2. If n is odd, write n = 21 + 1, and 

Now integrate by substituting u = sinx. 
3. (a) If m and n are even, write m = 2k and n = 21 and 

Substitute y = 2x. Expand and apply step 2 to the odd powers of 

(b) Apply step 3(a) to the even powers of cosy and continue until the 
integration is completed. 
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Example 3 Evaluate: (a) sin4x cos2x dx (b) (sin2x + sin3x cos2x) dx. 

(c) Stan3@ sec38 dB. 
I 

Solution (a) Substitute sin2x = (1 - cos 2x)/2 and cos2x = (1 + cos 2x)/2 to get 

(1 - cos 2 ~ ) ~  (1 + cos 2x) 
Jsin4x cos2x dx = I 4  2 dx 

1 = - l ( l  - 2 cos 2x + cos22x)(1 + cos 2x) dx 
8 

1 = - l ( l  - cos y - cos? + cos?) dy, 
16 

where y = 2x. Integrating the last two terms gives 

and 

I 4) 
sin? 

Icos$dy= (I-sin cosydy=siny- - 
3 

+ C.  

Thus 

sin 2y sin? 
~sin4xcos2xdx= - siny - 2 - - 

16 2 4 
+ sin y - - 

3 

sin2y sin? 

sin 4x sin32x ) + c, 
16 4 3 

and so L2'sin4x cos2x dx = = . 
8 

(b) I(sin2x + sin3x cos2x) dx = sin2x dx + sin3x cos2x dx I I 
= I (1-~2x)dx  

+ (1 - cos2x)cos2x sin x dx I 
- x 

2 4 I ( 1  - u2)u2du (u = cosx) 

x sin2x cos3x + cos5x + C.  
2 4 3 5 

(c) Method 1. Rewrite in terms of sec 8 and its derivative tan 8 sec 8: 

Itan38sec30 d0 = (tan 8sec 0 )(tan2@ sec28 ) dB I 
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Method 2. Convert to sines and cosines: 

sin 0(1 - cos20 ) J tan3e sec3e do = do = do 
c0s6e 

Certain other integration problems yield to the use of the addition formulas: 

sin(x + y) = sin x cos y + cos x sin y, (la) 
cos(x + y) = cos x cos y - sinx sin y ( 9  

and the product formulas: 

sinxcos = 4 [sin(x - y)  + sin(x + y)], (2a) 
sinx sin y = t [cos(x - y) - cos(x + y)], (2b) 

COSX COS y = + [COS(X - y)  + COS(X + y)]. ( 2 ~ )  

Exarnple 4 Evaluate (a) Jsin x cos 2x dx and (b) Jcos 3x cos 5x dx. 

cos3x + cosx + c. Solution (a) Jsinx cos2xdx= (sin3x - sinx) dx= - - 
6 2 

(see product formula (2a)). 

(b) ~ c o s 3 x c o s 5 x d x =  (cos8x + cos2x)dx= + + C  
16 4 

(see product formula (2c)). la 

Example 5 Evaluate ss inax sin bx dx, where a and b are constants. 

Solution If we use identity (2b), we get 

1 I s i n  ax sin bx dx = - J [cos(a - b)x - cos(a + b)x] dx 
2 

[The difference between the case a .f + b and the other two should be noted. 
The first case is "pure oscillation" in that it consists of two sine terms. The 
others contain the nonoscillating linear term x/2, called a secular term. This 
example is related to the phenomena of resonance: when an oscillating system 
is subjected to a sinusoidally varying force, the oscillation will build up 
indefinitely if the force has the same frequency as the oscillator. See Review 
Exercise 56, Chapter 8 and the discussion in the last part of Section 12.7, 
following equation (14).] A 

- - 

1 sin(a - b)x sin(a + b)x 
- - - + C  i f a f k b ,  
2 a - b  2 a + b  

1 - - sin 2ax + C, 
2 4a 

if a = b, 

1 sin 2ax - + C,  2 i f a =  -b. 4a 

Copyright 1985 Springer-Verlag.  All rights reserved.



10.1 Trigonometric Integrals 461 

Many integrals containing factors of the form d m ,  d=, or a2  + x2 
can be evaluated or simplified by means of trigonometric substitutions. In 
order to remember what to substitute, it is useful to draw the appropriate 
right-angle triangle, as in the following box. 

Trigonometric Substitutions 

1. If occurs, try x = a sin 6; then dx = a cos 6 dB and 

= a cos6; (a > 0 and 6 is an acute angle). 

4 asin.=. 

acose  Z J P - 2  

2. If d- occurs, try x = a sec 6; then dx = a tan 6 sec6 d6 and 

d m  = a tan@. 

A = u t a n e  

a  

3. If or a2  + x2 occurs, try x = a tan6; then dx = a sec26d6 

and = a sec 6 (one can also use x = a sinh 6; then {a- 

= a cosh 6). 

@T7 = a s e c e  A atan0 = x 

U 

Example 6 Evaluate: (a) dx 

Solution (a) Let x = 3 sin 6, so d9 - x2 = 3 cos 6. Thus dx = 3 cos 6 d6 and 

In the last line, we used the first figure in the preceding box to get the 
identity cot 6 = J m / x  with a = 3. 
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(b) Let x = $ sec 8, so dx = 4 tan 8 sec 8 dB, and JG = tan 8. Thus 

= I J tan'sec' do = 
2 tan 8 

Here is a trick' for evaluating sec 8: 

Jsec 8 d8 = sec 8 sec 8 + tan 8 de = J sec28 + sec 8 tan 8 
sec8 + tan8 sec8 + tan8 

= lnlsec8 + tan81 + C (substituting u = sec8 + tan8). 

A Thus 

Figure 10.1.1. Geometry of (see Fig. lo. 

the substitution x = + sec 6. If you have studied the hyperbolic functions you should note that this 
integral can also be evaluated by means of the formula ~ [ d u / J m ]  
= cosh- 'u + C. A 

These examples show that trigonometric substitutions work quite well in the 
presence of algebraic integrands involving square roots. You should also keep 
in mind the possibility of a simple algebraic substitution or using the direct 
integration formulas involving inverse trigonometric and hyperbolic functions. 

Example 7 Evaluate: 

X dx; 

Solution (a) Let u = 4 - x2, so du = - 2x dx. Thus 

(no trigonometric function appears). 

= 1 + ) + C (see p. 396). 

You may use the method of Example 6(b) if you are not familiar with 
hyperbolic functions. 
(c) To evaluate ](x2/J=) dx, let x = 2 sin 8; then dx = 2 cos 8 dB, and 

= 2 cos 8. Thus 

x 2 cos 0 d8 = 4 sin28 d8 
dx=12coss. J 

=4J  -y2' d8=28-  sin28+ C 

= 28 - 2 sin 8cos 8 + C. 

' The same trick shows that Jcsch @dB = -1nlcsch B + coth 81 + C.  
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" A From Fig. 10.1.2 we get 

Figure 10.1.2. Geometry of 
the substitution x = 2 sin 0. 

Completing the square can be useful in simplifying integrals involving the 
expression ax2 + bx + c.  The following two examples illustrate the method. 

dx Example 8 Evaluate J 
1 0 + 4 x - x  

Solution To complete the square, write 10 + 4x - x2 = - (x + a)2 + b; solving for a 
and b, we find a = -2 and b = 14, so 10 + 4x - x2 = -(x - 2)2 + 14. Hence 

where u = x - 2. This integral is s i n - ' ( u / m )  + C, so our final answer is 

If an integral involves ax2 + bx + c ,  complete the square and then use a 
trigonometric substitution or some other method to evaluate the integral. 

Example 9 Evaluate (a) dx 

~olution (a) J dx = dx 
x 2 +  x + 1 J (x + 1 / 2 ) ~  + 3/4 
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Applications of the kind encountered in earlier chapters may involve integrals 
of the type in this section. Here is an example. 

Example 10 Find the average value of sin2x cos2x on the interval [O, 2771. 

Solution By definition, the average value is the integral divided by the length of the 
interval: 

By Example 2, Jsin2x cos2x dx = (x/8) - (sin4x/32) + C. Thus 

so the average value is (1/2n) - 77/4 = 1/8. ki 

Exercises for Section 10.1 
Evaluate the integrals in Exercises 1-12. 

5. (cos zX - cos2x) dx 6. Jcos 2x sin x dx 

7. r ' h i n 2 x  cos 2x dx 8. do 
cos2e 

9. Jsin 4x sin 2x dx 10. Jsin 20 cos 50 d0 

I I. J2.sin 5x sin 2x dx 12. J:?2usin judu 

13. Evaluate Itan3x sec3x dx. [Hint: Convert to sines 
and cosines.] 

14. Show that fsin6x dx = & (60x - 48 sin 2x + 
4 sin32x + 9 sin 4x) + C. 

15. Evaluate f[ l /( l  + x2)] dx (a) as tan- 'x and (b) 
by the substitution x = tanu. Compare your an- 
swers. 

16. Evaluate the integral J[1/(4 + 9x2)] dx by using 
the substitutions (a) x = f u and (b) x = Stan 0. 
Compare your answers. 

Evaluate the integrals in Exercises 17-28. 

29. Find the average value of cosnx on the interval 
[0,2n]forn=0,1,2,3,4,5,6. 

30. Find the volume of the solid obtained by revolv- 
ing the region under the graph y = sin2x on 
[O, 2n] about the x axis. 

31. Find the center of mass of the region under the 
graph of 1 / d m  on [O,l]. 

32. A plating company wishes to prepare the bill for 
a silver plate job of 200 parts. Each part has the 

shape of the region bounded by y = .\I-, 
y = o , x = 5 .  
(a) Find the area enclosed. 
(b) Assume that all units are centimeters. Only 

one side of the part is to receive the silver 
plate. The customer was charged $25 for 
1460 square centimeters previously. How 
much should the 200 parts cost? 

33. The average power P for a resistance R and 
associated current i of period T is 

P = $ L T ~ i 2  dt. 

That is, P is the average value of the instanta- 
neous power Ri2 on [0, TI. Compute the power 
for R = 2.5, i = 10 sin(377t), T = 2n/377. 

34. The current I in a certain RLC circuit is given by 
I ( t )  = ~e-" '[sin2(wt) + 2 cos(2wt)I. Find the 
charge Q in coulombs, given by 

35. The root mean square current and voltage are 

1 /2 
I = ( i 2  dt) , and 

1 /2 
Erms = ( + ~~~2 dt) 
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where i(t) and e(t) are the current through and 
voltage across a pure resistance R. (The current 
flowing through R is assumed to be periodic 
with period T.) Compute these numbers, given 
that e(t) = 3 + (1.5)cos(IOOt) volts, and i(t) 
= 1 - 2 sin(100t - n/6) amperes, which corre- 
sponds to period T = 2a/100. 

36. The average power P = (1/ T ) J ~ R ~ ~  dt for 
periodic waveshapes does not in general obey a 
superposition principle. Two voltage sources e l  
and e2 may individually supply 5 watts (when 
the other is dead), but when both sources are 
present the power can be zero (not 10). Compare 
J:R(il + i2)l dt with J T R ~ ~  dt + J r ~ i :  dt when i, 
= I,cos(mot + i2 = 12cos(nwt + @2), in # n 
(in, n positive integers), T = 2a/o,  and R, I , ,  I,, 
w,  @ ,  , @, are constants. 

37. A charged particle is constrained by magnetic 
fields to move along a straight line, oscillating 
back and forth from the origin with higher and 
higher amplitude. 

Let S(t) be the directed distance from the 
origin, and assume that S(t) satisfies the equa- 
tion 

2 
[s(t) l  S'(t) = t sin t + sin2t cos2t. 

(a) Prove [S(t)I3 = 36(x sin x + sin2x cos2x) dx. 
(b) Find S(t). 
(c) Find all zeros of St(t) for t > 1. Which zeros 

correspond to times of maximum excursion 
from the origin? 

*38. Show that the integral in Example 5 is a continu- 
ous function of b for fixed a and x. 

10.2 Partial Fractlsns 
By the method of partial fractions, one can evaluate any integral of the form 

dx,  where P and Q are polynomials. 

The integral of a polynomial can be expressed simply by the formula 

anxn+'  an- lxn  
J ( a n x n  + a n - l x n - I  + . . + a , x  + ao)dx=  ---- + - + . . + aox + C,  

n + l  n 

but there is no simple general formula for integrals of quotients of polynomi- 
als, i.e., for rational functions. There is, however, a general method for 
integrating rational functions, which we shall learn in this section. This 
method demonstrates clearly the need for evaluating integrals by hand or by a 
computer program such as MACSYMA, which automatically carries out the 
procedures to be described in this section, since tables cannot include the 
infinitely many possible integrals of this type. 

One class of rational functions which we can integrate simply are the 
reciprocal powers. Using the substitution u = ax  + b,  we find that 
J [ d x / ( a x  + b)"] = J(du /aun) ,  which is evaluated by the power rule. Thus, we 
get 

More generally, we can integrate any rational function whose denominator 
can be factored into linear factors. We shall give several examples before 
presenting the general method. 

Example 1 Evaluate dx.  
( x  - 1)(x  - 3 )  

Solution We shall try to write 
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for constants A and B. To determine them, note that 

Thus, we should choose 

A + B = l  and - 3 A - B = l .  
Solving, A = - 1 and B = 2. Thus, 

Example 2 Evaluate 

Solution (a) As in Example 1, we might expect to decompose the quotient in terms of 
l/(x - 2) and l/(x + 3). In fact, we shall see that we can write 

if we choose the constants A, B, and C suitably. Adding the terms on the 
right-hand side of equation (1) over the common denominator, we get 

The numerator, when multiplied out, would be a polynomial a2x2 + a,x + a,, 
where the coefficients a,, a , ,  and a, depend on A, B, and C. The idea is to 
choose A, B, and C so that we get the numerator 4x2 + 2x + 3 of our 
integration problem. (Notice that we have exactly three unknowns A, B, and 
C at our disposal to match the three coefficients in the numerator.) 

To choose A, B, and C, it is easiest not to multiply out but simply to write 

and make judicious substitutions for x. For instance, x = -3 gives 

4 . 9 - 2 - 3 + 3 = ~ ( - 3 - 2 1 2 ,  

33 = 25C, 
c,33 

25 ' 

Next, x = 2 gives 

4 . 4 + 2 - 2 + 3 = B ( 2 + 3 ) ,  
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To solve for A, we may use either of two methods. 
Method I. Let x = 0 in equation (2): 

3 =  - 6 A + 3 B + 4 C  

Method 2. Differentiate equation (2) to give 

8x + 2 =  ~ [ ( x  - 2) + (X +3) ]  + B +2C(x -2) 

and then substitute x = 2 again: 

8 * 2 + 2 = A ( 2 + 3 ) +  B, 

A =a. 
25 

This gives 

(At this point, it is a good idea to check your answer, either by adding up the 
right-hand side or by substituting a few values of x, using a calculator.) 

We can now integrate: 

(b) Since the integrand "blows up" at x = -3 and x = 2, it only makes 
sense to evaluate definite integrals over intervals which do not contain these 
points; [ -  1,1] is such an interval. Thus, by (a), the definite integral is 

Not every polynomial can be written as a product of linear factors. For 
instance, x2 + 1 cannot be factored further (unless we use complex numbers) 
nor can any other quadratic function ax2 + bx + c for which b2 - 4ac < 0; 
but any polynomial can, in principle, be factored into linear and quadratic 
factors. (This is proved in more advanced algebra texts.) This factorization is 
not always so easy to carry out in practice, but whenever we manage to factor 
the denominator of a rational function, we can integrate that function by the 
method of partial fractions. 

Example 3 Integrate & dx. 

Solution The denominator factors as (x - 1)(x2 + x + l), and x2 + x + 1 cannot be 
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further factored (since b2 - 4ac = 1 - 4 = - 3  < 0). Now write 

Thus 1 = a(x2 + x + I )  + (x - l)(Ax + B). We substitute values for x: 

Comparing the x2 terms, we get 0 = a + A, so A = - 4. Hence 

1 1 
-=I(-- x ~ - 1  3  X - 1  X ~ + X + I  x + 2  1. 

(This is a good point to check your work.) 
Now 

and, writing x + 2 = 3(2x + 1) + 2 ,  

Thus 

Observe that the innocuous-looking integrand l/(x3 - 1) has brought forth 
both logarithmic and trigonometric functions. A 

Now we are ready to set out a systematic method for the integration of 
P(x)/Q(x) by partial fractions. (See the box on p. 469.) A few remarks may 
clarify the procedures given in the box. In case the denominator Q factors into 
n distinct linear factors, which we denote Q = (x - r , ) ( x  - r,) . . . (x - r,), 
we write 

and determine the n coefficients a , ,  . . . , a, by multiplying by Q and match- 
ing P to the resulting polynomial. The division in step 1 has guaranteed that P 
has degree at most n - 1, containing n coefficients. This is consistent with the 
number of constants a , ,  . . . , LY, we have at our disposal. Similarly, if the 
denominator has repeated roots, or if there are quadratic factors in the 
denominator, it can be checked that the number of constants at our disposal is 
equal to the number of coefficients in the numerator to be matched. A system 
of n equations in n unknowns is likely to have a unique solution, and in this 
case, one can prove that it does.2 

See Review Exercise 88, Chapter 13 for a special case, or H. B. Fine, College Algebra, Dover, 
New York (1961), p. 241 for the general case. 
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To integrate P(x)/Q(x), where P and Q are polynomials containing no 
common factor: 

1. If the degree of P is larger than or equal to the degree of Q, divide Q 
into P by long division, obtaining a polynomial plus R(x)/Q(x), 
where the degree of R is less than that of Q. Thus we need only 
investigate the case where the degree of P is less than that of Q. 

2. Factor the denominator Q into linear and quadratic factors-that is, 
factors of the form (x - r) and ax2 + bx + c. (Factor the quadratic 
expressions if b2 - 4ac > 0.) 

3. If (x - r)" occurs in the factorization of Q, write down a sum of the 

where a, ,a2,  . . . are constants. Do so for each factor of this form 
(using constants b,, b,, . . . , c,,c,, . . . , and so on) and add the 
expressions you get. The constants a, ,  a,, . . . , b,, b,, . . . , and so on 
will be determined in step 5. 

4. If (ax2 + bx + c)P occurs in the factorization of Q with b2 - 4ac < 0, 
write down a sum of the form 

a x 2 + b x + c  ( a x 2 + b x + c )  

Do so for each factor of this form and add the expressions you get. 
The constants A,,A,, . . . , B,, B2, . . . are determined in step 5. Add 
this expression to the one obtained in step 3. 

5. Equate the expression obtained in steps 3 and 4 to P(x)/Q(x). 
Multiply through by Q(x) to obtain an equation between two polyno- 
mials. Comparing coefficients of these polynomials, determine equa- 
tions for the constants a, ,  a,, . . . , A,,  A,, . . . , B,, B,, . . . and solve 
these equations. Sometimes the constants can be determined by 
substituting convenient values of x in the equality or by differenti- 
ation of the equality. 

6. Check your work by adding up the partial fractions or substituting a 
few values of x. 

7. Integrate the expression obtained in step 5 by using 

The terms with a quadratic denominator may be integrated by a 
manipulation which makes the derivative of the denominator appear 
in the numerator, together with completing the square (see Exam- 
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Example 4 Integrate I - X' + dx. 
x3 - x2 

Solution First we divide out the fraction to get 

The denominator x3 - x2 is of degree 3, and the numerator is of degree zero. 
Thus we proceed to step 2 and factor: 

x3 - x2 = x2(x - 1 ) .  

Here x  = x  - 0  occurs to the power 2, so by step 3, we write down 

We also add the term b l / ( x  - 1 )  for the second factor. 

Since there are no quadratic factors, we omit step 4. By step 5, we equate the 
preceding expression to l / ( x 3  - x2): 

Then we multiply by x2(x - 1): 

Setting x  = 0, we get a,  = - I .  Setting x  = 1, we get b ,  = 1. Comparing the 
coefficients of x2 on both sides of the equation gives a ,  + b ,  = 0,  so a ,  = - b ,  
= - 1 .  Thus a, = - 1, a ,  = - 1, and b ,  = 1. (We can check by substitution 
into the preceding equation: the left side is (- l ) x ( x  - I )  - ( x  - 1) + x2, 
which is just 1 .) 

Thus 

and so 

Finally, 

Example 5 Integrate x2 dx. J- ( x 2  - 2) 

Solution The denominator factors as ( x  - f i ) 2 ( x  + SO we write 
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Thus 

x2 = a l ( x  - J Z ) ( X  + JZ j+ a2(x + b1(x  + J Z ) ( X  - 

+ b2(x - 

We substitute values for x :  

x = @ : 2 = 8 a 2  so a, = $ ; 

x =  - f i : 2 = 8 b 2  so b 2 = $ .  

Therefore 

x2  = a,(x2  - 2)(x + 6 )  + t ( x 2  + 2 n x  + 2) 

+ b,(x2 - 2)(x -a) + $ ( x 2  - 2JZx + 2) 

= ( a ,  + bl)x3  + (@a,  + f - f i b 1 ) x 2  

+ ( -2al  - 2b,)x - 2 a a ,  + 1 + 2 f i b , ,  

and so 

a ,+b ,=O and @ a , + ; - f i b , = l .  

Thus 

Hence 

and so 

Example 6 Integrate x3 dx. J ( x  - 1)(x2 + 2x + 2  j 
Solution For the factor x  - 1 we write 

and for ( x 2  + 2x + 2)2 (which does not factor further since x2 + 2x + 2  does 
not have real roots since b2 - 4ac = 4 - 4  . 1 - 2  = -4 < 0) we write 
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We then set 

and multiply by (x - 1)(x2 + 2x + 2)2: 

+ (A2x + B2)(x - 1) = x3. 

Setting x = 1 gives a ,(25) = 1 or a ,  = & . Expanding the left-hand side, we get: 

&(x4 + 4x3 + 8x2 + 8x + 4) + A , X ~  + (A,  + B , ) x ~  + B ~ X ~  

-2A1x - 2B, + A ~ X ~  + (B2 - A2)x - B2 = x3. 

Comparing coefficients: 

x4: & + A ,  =O; 

x3: & +  (A, + B,) = 1; 

x2: + B, + A2 = 0; 

x: A - 2 A , + ( B 2 - A 2 ) = 0 ;  

xO(= I): & - 2B, - B2 = 0. 

Thus 

A ,  = - & (from equation (3)); 

B -22 1 - 25 (from equation (4)); 

A, = - (from equation (5)); 

B2 = t (from equation (6)). 

At this stage you may check the algebra by substitution into equation (7). 
Algebraic errors are easy to make in integration by partial fractions. 

We have thus far established 

We compute the integrals of the first two terms as follows: 

1 = - - ln1x2 + 2x + 21 + 23 tan-'(x + 1) + C. 
2 
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Finally, for the last term, we rearrange the numerator to make the derivative 
of the quadratic polynomial in the denominator appear: 

= 15. 1 - 1 dx. 
(x2 + 2x + 2) lo, [(x + 1)i + 112 

Let x + 1 = tan 8, so dx = sec28 dB and (x + 1)2 + 1 = sec28. Then 

1 sec28 dB dx = , a = ,cos28 d8 J [(x + 1l2+ 1j2 sec 19 

1 

Figure 10.2.1. Geometry of (see Fig. 10.2.1). 

the substitution Adding the results obtained above, we find 
x + 1 =tan@. 

x3 dx 
(x - l)(x2 + 2x + 2) 

Integrands with a single power (x - a)' in the denominator may appear to 
require partial fractions but are actually easiest to evaluate using a simple 
substitution. 

Exarnple 7 Integrate , x;::xl; ' dx. 

Solution L e t u = x - 1  s o d u = d x a n d x = u + l . T h e n  
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To conclude this section, we present a couple of techniques in which an 
integrand is converted by a substitution into a rational function which can 
then be integrated by partial fractions. The first such technique, called the 
method of rationalizing substitutions, applies when an integrand involves a 
fractional power. The idea is to express the fractional power as an integer 
power of a new variable. 

(1 + x)2'3 
Example 8 Eliminate the fractional power from I 1 + 2 x  

dx. 

Solution To get rid of the fractional power, substitute u = (1 + x)'I3. Then u3 = 1 + x 
and 3u2du = dx, so the integral becomes 

After the rationalizing substitution as made, the method of partial functions 
can be used to evaluate the integral. (Evaluating the integral above is left as 
Exercise 24). 

Example 9 Try the substitution u = 'JG in the integrals: 

Solution We have u3 = x2 + 4 and 3u2 du = 2x dx, so integral (a) becomes 

from which we cannot eliminate x without introducing a new fractional 
power. However, (b) is 

(which can be evaluated as the integral of a polynomial). The reason the 
method works in case (b) lies in the special relation between the exponents of 
x inside and outside the radical (see Exercise 27). A 

The second general technique applies when the integrand is built up by 
rational operations from sin x and cos x (and hence from the other trigonomet- 
ric functions as well). The substitution u = tan(x/2) turns such an integrand 
into a rational function of u by virtue of the following trigonometric identities: 

2u sin x = - 
1 + u 2 '  

1 - u2 
COSX = - 

1 + u 2 '  
and 

.XI? I To prove equation (8), use the addition formula 
1 

Fimve 10.2.2. With the - 
substitution tan(x/2) = u, 

sin(x/2) = u /  J-. 
1 2 u (see Fig. 10.2.2). 
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Similarly we derive equation (9). Equation (10) holds since 

Exarnple 710 Evaluate dx 
J 2 + c o s x -  

Solullon Using equations (8), (9), and (lo), we convert the integral to 

which is rational in u. No partial fraction decomposition is necessary; 
the.substitution u = fl tan8 converts the integral to 

(using the identity 1 + tan28 = sec28). Writing the answer in terms of x, we get 

for our final answer. A 

I Rational Expressions in sinx and cosx 
If f(x) is a rational expression in sinx and cosx, then substitute 
u = tan(xl2). Using equations (8), (9), and (lo), transform Jf(x)dx into 
the integral of a rational function of u to which the method of partial 
fractions can be applied. 

Example 1 1 Find L'l4sec 8 d8. 

Solution First we find JsecOd8 = J[d8/cos8]. We use equations (9) and (10) (with x 
replaced by 8) to get 

(Compare this procedure with the method we used to find JsecOd8 in 
Example 6(b), Section 10.1 .) Finally, 
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Exerilses for Section 10.2 
Evaluate the integrals in Exercises 1-12 using the 
method of partial fractions. 

1 

J (x - 2)2@2 + 9 2  
dx. 

J$ zjx 

12. y (sec2x + l)sec2x dx 

1 + tan3x 
Evaluate the integrals in Exercises 13-16 using a 
rationalizing substitution. 

7 

15. (xyx-dx 16. (x3 vm dr 

Evaluate the integrals in Exercises 17-20. 

dx 17. l-- 1 + sinx 

21. Find the volume of the solid obtained by revolv- 
ing the region under the graph of the function 
y = 1/[(1 - x)(l - 2x)] on [5,6] about they axis. 

22. Find the center of mass of the region under the 
graph of l/(x2 + 4) on [I, 31. 

23. Evaluate dx . 
*24. Evaluate ;he integral in Example 8. 

25. A chemical reaction problem leads to the follow- 
ing equation: 

dx 
= k(dt, k = constant. 1 (80 - x)(60 - x) 

In this formula, x(t) is the number of kilograms 

of reaction product present after t minutes, start- 
ing with 80 kilograms and 60 kilograms of two 
reacting substances which obey the law of mass 
action. 
(a) Integrate to get a logarithmic formula in- 

volving x and t (x = 0 when t = 0). 
(b) Convert the answer to an exponential for- 

mula for x (assume x < 60). 
(c) How much reaction product is present after 

15 minutes, assuming x = 20 when t = lo? 
26. Partial fractions appear in electrical engineering 

as a convenient means of analyzing and describ- 
ing circuit responses to applied voltages. By 
means of the Laplace transform, circuit re- 
sponses are associated with rational funcitons. 
Partial fraction methods are used to decompose 
these rational functions to elementary quotients, 
which are recognizable to engineers as arising 
from standard kinds of circuit responses. For 
example, from 

an engineer can easily see that this rational func- 
tion represents the response 

~ e - ~ ' +   cost + Csint + Dcos2t + Esin2t. 
Find the constants A, B, C, D, E. 

+27. (a) Try evaluating J(xm + b)p/4xr dx, where m, 
p, q, and r are integers and b is a constant by the 
substitution u = (xm + b)'/4. 
(b) Show that the integral in (a) becomes the 
integral of a rational function of u when the 
number r - m + 1 is evenly divisible by m. 

*28. Any rational function which has the form 
~ ( x ) / ( x  - a)"(x - b)", where deg p < m + n, 
can be integrated in the following way: 
(i) Write 

P(X) - q(x) r(x) --+- 
(x -a )m(x-b )"  (x -a ) "  ( x - b ) " '  

where deg q < m and deg r < n. 
(ii) Integrate each term, using the substitutions 

u = x - a a n d v = x - b .  
(a) Use this procedure to find 

(b) Find the same integral by the ordinary 
partial fraction method. 

(c) Compare answers and the efficiency of 
the two methods. 
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10.3 Arc Length and 
Surface Area 
Integration can be used to find the length of graphs in the plane and the area of 
surfaces of revolution. 

In Sections 4.6, 9.1, and 9.2, we developed formulas for areas under and 
between graphs and for volumes of solids of revolution. In this section we 
continue applying integration to geometry and obtain formulas for lengths 
and areas. 

The length of a piece of curve in the plane is sometimes called the arc 
length of the curve. As we did with areas and volumes, we assume that the 
length exists and will try to express it as an integral. For now, we confine our 
attention to curves which are graphs of functions; general curves are consid- 
ered in the next section. 

We shall begin with an argument involving infinitesimals to derive the 
formula for arc length. Following this, a different derivation will be given 
using step functions. The second method is the "honest" one, but it is also 
more technical. 

We consider a curve that is a graph y = f ( x )  from x = a to x = b, as in 
Fig. 10.3.1. The curve may be thought of as being composed of infinitely 

Figure 10.3.1. An 
"infinitesimal segment" of 
the graph off. 

many infinitesimally short segments. By the theorem of Pythagoras, the length 

ds of each segment is equal to ddx2 + dy2 .  But dy/dx = f ( x ) ,  so dy = 

f ( x ) ~ x  and ds = J dx2 + f ( x ) ] ~ ~ x ~  = 7 1 + [ y ( X I ]  dx. TO get the total 

length, we add up all the infinitesimal lengths: 

Suppose that the function f is continuous on [a,  b],  and that the deriva- 
tive f ' exists and is continuous (except possibly at finitely many points) 
on [a,  b]. Then the length of the graph off on [a, b] is: 

Let us check that formula (1) gives the right result for the length of an arc of a 
circle. 
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Example I Use integration to find the length of the graph of f(x) = J1 - x2 on [0, b], 
where 0 < b < 1. Then find the length geometrically and compare the results. 

Solution By formula (I), the length is dbJ1 + [ f (x)12 dx, where f(x) =I/-. We 

have 

Hence 

Examining Fig. 10.3.2, we see that sin-'(b) is equal to 8, the angle intercepted 

Figure 10.3.2. The length of 
the arc PQ is 0 = sin-'b. 

by the arc whose length we are computing. By the definition of radian 
measure, the length of the arc is equal to the angle B = sinP'(b), which agrees 
with our calculation by means of the integral. A 

Example 2 Find the length of the graph of f(x) = (x - 1)3/2 + 2 on [1,2]. 

Solution We are given f(x) = (x - 1)3/2 + 2 on [1,2]. Since f(x) = $(x - I ) ' / ~ ,  the 
length of the graph is 

Due to the square root, the integral in formula (1) is often difficult or even 
impossible to evaluate by elementary means. Of course, we can always 
approximate the result numerically (see Section 11.5 for specific examples). 
The following example shows how a simple-looking function can lead to a 
complicated integral for arc length. 

Example 3 Find the length of the parabola y = x2 from x = 0 to x = 1. 

Solution We substitute f(x) = x2 and f(x) = 2x into formula (1): 
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Now substitute x = +tan8 and \k1/2)' + x2 = !sect): 

We evaluate the integral of sec38 using the following trickery3: 

Isec38 d8 = sec 8 sec28 d8 = sec 13 (tan2@ + 1) dB I I 
= l s e c  8 tan28 d8 + sec 8 d8 I 
= I ( s e c ~ t a n ~ ) t a n ~ d f l +  lnlsec8 + tan81. 

(see Example 10, Section 10.2.) Now integrate by parts: 

= sec 8 tan 8 - sec 8sec28 dB I 
= secOtan8 - sec38d8. I 

Substituting this formula into the last expression for Jsec38 d8 gives 

1 Isec38 d8 = - (sec 8 tan 8 + lnlsec 8 + tan 8 1) + C. 
2 

Since 2x = tan8 and see8 = 2 Jw = d l ,  we can express the 

integral Jsec38d8 in terms of x as 

x JTTG + +lnl2x + JCGGI + C. 

[One may also evaluate the integral ~ d ( + ) ~  + x2 dx using integral formula 

(43) from the endpapers.] Substitution into the formula for L gives 

Example 4 Express the length of the graph of f(x) = J- on [0, b] as an integral. 

Solution We get 

We can also write 

~ s e c 3 0 d 0 = j  d o - j  (u = sin 0). 

The last integral may now be evaluated by partial fractions. 
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Thus, 

It turns out that the antiderivative 

cannot be expressed (unless k2 = 0 or 1) in terms of algebraic, trigonometric, 
or exponential functions. It is a new kind of function called an elliptic 
function. (See Review Exercises 85 and 92 for more examples of such 
functions.) A 

We now turn to the derivation of formula (1) using step functions. 
Our first principle for arc length is that the length of a straight line 

segment is equal to the distance between its endpoints. Thus, if f(x) = mx + q 
on [a,b], the endpoints (see Fig. 10.3.3) of the graph are (a,ma + q) and 

Figure 10.3.3. The length of 
the dark segment is 

( b  - a) JW , where rn 
I t & 

a 6 X 
is the slope. 

(b, mb + q), and the distance between them is 

a - b)' + [(ma + q) - (mb + q)]2 = {(a - b12 + m2(a - b12 

(Since a < b, the square root of (a - b)2 is b - a.) 
Our strategy, as in Chapter 9, will be to interpret the arc length for a 

simple curve as an integral and then use the same formula for general curves. 
In the case of the straight line segment, f(x) = mx + q, whose length between 
x = a and x = b is (b - a) I/=, we can interpret m as the derivative f'(x), 
so that 

Length = (b - a)/= dx. 

Since the formula for the length is an integral off', rather than off, it is 
natural to look next at the functions for which f' is a step function. Iff' is 
constant on an interval, f is linear on that interval; thus the functions with 
which we will be dealing are the piecewise linear (also called ramp, or 
polygonal) functions. 

To obtain a piecewise linear function, we choose a partition of the 
interval [a, b], say, (xo,x,, . . . , x,) and specify the values (yo, y , ,  . . . , y,) of 
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the function f at these points. For each i = 1,2, . . . , n, we then connect the 
point (xi-,, yip,)  to the point (xi, yi) by a straight line segment (see Fig. 
10.3.4). 

Figure 10.3.4. The graph of I 
.s 

a piecewise linear function. 
a b 

The function f(x) is differentiable on each of the intervals (xi-,,xi), 
where its derivative is constant and equal to the slope (yi -y ip  I)/(xi - xi- ,). 

Thus the function -\I1 + [f(x)12 is a step function [a, b], with value 

on (xi- , , Therefore, 

= i=  C 1 i ( x i  - + (y; - y ;  . 

Note that the ith term in this sum, J(x; - x i  ,)' + (yi -yip , is just the 
length of the segment of the graph off between (xi-, , y i  ,) and (xi, y,). 

Now we invoke a second principle of arc length: if n curves are placed 
end to end, the length of the total curve is the sum of the lengths of the pieces. 
Using this principle, we see that the preceding sum is just the length of the 
graph off on [a, b]. So we have now shown, for piecewise linear functions, that 

the length of the graph off on [a, a] equals the integral Jb-\Il + [ f (x)]' dx. 
a 

Example 5 Let the graph o f f  consist of straight line segments joining (1,O) to (2,l) to 
(3,3) to (4, I). Verify that the length of the graph, as computed directly, 

is given by the formula 

Solution The graph is sketched in Fig. 10.3.5. The length is 

Actually, .\I1 + [ f'(x)12 is not defined at the points x o , x , ,  . . . , x,, but this does not matter 

when we take its integral, since the integral is not affected by changing the value of the integrand 
at  isolated points. 
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I this graph is dl  + d2 + d,. 
n 

On the other hand, 

(and is not defined at x = 1,2,3,4). Thus, by the definition of the integral of a 
step function (see Section 4.3), 

which agrees with the preceding answer. A 

Justifying the passage from step functions to general functions is more 
complicated than in the case of area, since we cannot, in any straightforward 
way, squeeze a general curve between polygons as far as length is concerned. 
Nevertheless, it is plausible that any reasonable graph can be approximated by 
a piecewise linear function, so formula (1) should carry over. These consider- 
ations lead to the technical conditions stated in conjunction with formula (1). 

If we revolve the region R under the graph of f(x) (assumed non- 
negative) on [a,b], about the x axis, we obtain a solid of revolution S. In 
Section 9.1 we saw how to express the volume of such a solid as an integral. 
Suppose now that instead of revolving the region, we revolve the graph 
y = f(x) itself. We obtain a curved surface 2, called a surface of revolution, 
which forms part of the boundary of S. (The remainder of the boundary 
consists of the disks at the ends of the solid, which have radii f(a) and f(b); 
see Fig. 10.3.6.) Our next goal is to obtain a formula for the area of the surface 
2. Again we give the argument using infinitesimals first. 

Figure 10.3.6. The 
boundary of the solid of 
revolution S consists of the - 
surface of revolution C 
obtained by revolving the 
graph, together with two 
disks. 

Z (surface) 

Referring to Figure 10.3.7, we may think of a smooth surface of revolu- 
tion as being composed of infinitely many infinitesimal bands, as in Fig. 
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Figure 10.3.7. The surface Revolve 

of revolution may be 
considered as composed of 
infinitely many infinites- 
imal frustums. 

Example 6 

Solution 

Figure 10.3.8. Bands of 
equal width have equal 
area. 

10.3.7. The area of each band is equal to its circumference 2nf(x) times its 
width ds = d m ,  so the total area is 

since dy = f'(x) dx. 

The area of the surface obtained by revolving the graph of f(x) (>  0) on 
[a, b] about the x axis is 

We now check that formula (2) gives the correct area for a sphere. 

Find the area of the spherical surface of radius r obtained by revolving the 
graph of y = d m  on [ - r, r] about the x axis. 

As in Example 1, we have J- = r / d n ,  so the area is 

which is the usual value for the area of a sphere. A 

If, instead of the entire sphere, we take the band obtained by restricting x to 
[a, b] (- r < a < b < r), the area is 2nJ:rdx = 2mr(b - a). Thus the area 
obtained by slicing a sphere by two parallel planes and taking the middle 
piece is equal to 2nr times the distance between the planes, regardless of 
where the two planes are located (see Fig. 10.3.8). Why-doesn't the "longer" 
band around the middle have more area? 

As with arc length, the factor \I1 + [ f'(x)12 in the integrand sometimes 
makes it impossible to evaluate the surface area integrals by any means other 
than numerical methods (see Section 11.5). To get a problem which can be 
solved, we must choose f carefully. 
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Example 7 Find the area of the surface obtained by revolving the graph of x3 on [0,1] 
about the x axis. 

Solution We find that f ( x )  = 3x2 and dJl+[f(xlli = d l ,  so 

Figure 10.3.9. Rotating 
y = f ( x )  about they axis. 

By a method similar to that for deriving equation (2), we can derive a formula 
for the area obtained by revolving the graph y = f (x )  about the y axis for 
a < x < b. Referring to Figure 10.3.9, the area of the shaded band is 

Width x Circumference = ds .2rrx = 2vxddx2 + dy2 

Thus the surface area is (b277x\/l + [ f ( x )  1' dx.  
a 

Area of a Surface of Revolution about the y Axis 
The area of the surface obtained by revolving the graph of f ( x )  ( > 0 )  on 
[ a ,  b] about they axis is 

A = 2 , i b x  d m  dx. ( 3 )  

Example 8 Find the area of the surface obtained by revolving the graph y = x2 about the 
y axis for 1 ,< x < 2. 

Solution If f ( x )  = xi, f ( x )  = 2x and d m  = Js. Then 

A = 2nJ2xd- dx = a Ll7u1/' du ( u  = 1 + 4x2, du = 8x dx)  
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Finally we sketch how one derives formula (2) using step functions. The 
derivation of formula (3) is similar (see Exercise 41). 

If f(x) = k, a constant, the surface is a cylinder of radius k and height 
b - a. Unrolling the cylinder, we obtain a rectangle with dimensions 2n-k and 
b - a (see Fig. 10.3.10), whose area is 27rk(b - a), SO we can say that the area 
of the cylinder is 2n-k(b - a). 

Circumference 
/ 2 n k  

-Ref 

Cut here 

Figure 10.3.10. The area of 
the shaded cylinder is 
2nk(b  - a). 

Radius 
k 

Next we look at the case where f(x) = mx + q, a linear function. The 
surface of revolution, as shown in Fig. 10.3.1 1, is a frustum of a cone-that is, 
the surface obtained from a right circular cone by cutting it with two planes 

,? perpendicular to the axis. To find the area of this surface, we may slit the 
frustum along a line and unroll it into the plane, as in Fig. 10.3.12, obtaining a 
circular sector of radius r and angle 8 with a concentric sector of radius r - s 
removed. By the definition of radian measure, we have Br = 2vr2 and B(r - s) 
= 2n-r, , so Bs = 2n-(r2 - rI), or B = 2n-[(r2 - r,)/s]; from this we find that 
r = r2s/(r, - r,). The area of the figure is 

Figure 10.3.11. A frustum 
of a cone. 

Figure 10.3.12. The area of 
the frustum, found by 
cutting and unrolling it, is 
ns(r ,  + r2). 

= Bs r - - = 27r(r2 - r,) - - - ( S )  ( r 2 y r ,  ;) 
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(Notice that the proof breaks down in the case r,  = r, = k, a cylinder, since r 
is then "infinite." Nevertheless, the resulting formula 2rks for the area is still 
correct!) 

We now wish to express m(r,  + r,) as an integral involving the function 
f(x) = mx + q. We have r,  = ma + q, r2 = mb + q, and s = J x ( b  - a) 
(see Fig. 10.3.3), so the area is 

= [m(b2 - a') + 2q(b - a)]  

Since m(x2/2) + qx is the antiderivative of mx + q, we have 
h 

2rd= (rn $ + qx) 1 
a 

so we have succeeded in expressing the surface area as an integral. 
Now we are ready to work with general surfaces. If f(x) is piecewise linear 

on [a, b], the surface obtained is a "conoid," produced by pasting together a 
finite sequence of frustums of cones, as in Fig. 10.3.13. 

Figure 10.3.13. The surface 
obtained by revolving the 
graph of a piecewise linear 
function is a "conoid" 
consisting of several 
frustums pasted together. 

The area of the conoid is the sum of the areas of the component frus- 
tums. Since the area of each frustum is given by the integral of the func- 

tion 2 r d m  f(x) over the appropriate interval, the additivity of the 

integral implies that the area of the conoid is given by the same formula: 

We now assert, as we did for arc length, that this formula is true for general 
functions f. [To do this rigorously, we would need a precise definition of 
surface area, which is rather complicated to give (much more complicated, 
even, than for arc length).] 
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Exarnple 9 The polygonal line joining the points (2, O), (4 ,4) ,  (7 ,5) ,  and (8 ,3 )  is revolved 
about the x axis. Find the area of the resulting surface of revolution. 

Solution The function f  whose graph is the given polygon is 

2 < x < 4 ,  

4 < x < 7 ,  

- 2 ( x  - 7 ) + 5 ,  7 < x < 8. 

Then we have 

Thus, A = 2 n  f ( x )  1 + f ' ( ~ ) ~  dx 6" 

Using J ( x  - a )  dx = 4 ( x  - a)2 + C, we find 

Exercises for Section 10.3 
1. Find the length of the graph of the function 

f(x) = x4/8 + 1/4x2 on [l, 31. 
2. Find the length of the graph of the function 

f(x) = (x4 - 12x + 3)/6x on [2,4]. 
3. Find the length of the graph of the function 

y .= [x3 + (3/x)]/6 on 1 < x < 3. 
4. Find the length of the graph of the function 

y = \1;;(4x - 3)/6 on 1 < x < 9. 
5. Express the length of the graph of x" on [a, b] 

as an integral. (Do not evaluate.) 
6. Express the length of the graph of f(x) = sinx 

on [O,2n] as an integral. (Do not evaluate.) 
7. Express the length of the graph of f(x) = 

x cosx on [O,l] as an integral. (Do not evalu- 
ate.) 

8. Express the length of the graph y = e - X  on 
[ -  1,1] as an integral. (Do not evaluate.) 

In Exercises 9-12, let the graph off consist of straight 
line segments joining the given points. Verify that the 

length of the graph as computed directly is equal to that 
given by the arc length formula. 

9. (0,O) to (1,2) to (2,l) to (5,O). 
lo. (I, 1) to (2,2) to (3,O). 
11. (- 1, - 1) to (0,l) to (1,2) to (2, -2). 
12. (-2,2) to (- 1, -3) to (3,l). 

Find the area of the surfaces obtained by revolving the 
curves in Exercises 13-20. 

13. The graph of on [O, 21 about the x axis. 
14. The graph of y = [x3 + (3/x)]/6, 1 < x < 3 

about the x axis. 
15. The graph of y = \1;;(4x - 3)/6, 1 < x < 9 about 

the x axis. 
16. The graph of ex on [0, 11 about the x axis. 
17. The graph of y = cosx on [-?r/2,?r/2] about 

the x axis. 
18. The parabola y = \1;; on [4,5] about the x axis. 
19. The graph of x ' / ~  on [l, 31 about they axis. 
20. The graph of y = lnx on [2,3] about they axis. 
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In Exercises 21-24, the polygon joining the given points 
is revolved about the x axis. Find the area of the 
resulting surface of revolution. 

21. (0,O) to (1,l) to (2,O). 
22. (1,O) to (3,2) to (4,O). 
23. (2,l) to (3,2) to (4, 1) to (5,3). 
24. (4,O) to (5,2) to (6,l) to (8,O). 

25. Find the length of the graph of a(x + b)3/2 + c 
on [0, I], where a, b, and c are constants. What is 
the effect of changing the value of c? 

26. Find the length of the graph of y = x2 on [0, b]. 
a 27. Express the length of the graph of f(x) = 2x3 on 

[ -  1,2] as an integral. Evaluate numerically to 
within 1.0 by finding upper and lower sums. 
Compare your results with a string-and-ruler 
measurement. 

28. Find the length, accurate to within 1 centimeter, 
of the curve in Fig. 10.3.14. 

Figure 10.3.14. Find the 
length of this curve. 

For each of the functions and intervals in Exercises 
29-32, express as an integral: (a) the length of the 
curve; (b) the area of the surface obtained by revolving 
the curve about the x axis. (Do not evaluate the inte- 
grals.) 

29. tan x + 2x on [0, n/2] 
30. x3 + 2x - 1 on [I, 31 
31. l / x  + x on [1,2] 
32. ex + x3 on [O,1] 

a33. Find the area, accurate to within 5 square centi- 
meters, of the surface obtained by revolving the 
curve in Fig. 10.3.15 around the x axis. 

Figure 10.3.15. Find the 
area of the surface obtained 
by revolving this curve. 

a34. Use upper and lower sums to find the area, 
accurate to within 1 unit, of the surface obtained 
by revolving the graph of x4 on [O,1] about the x 
axis. 

35. Prove that the length of the graph of f ( x )  = 
cos (0  x) on [O,2n] is less than or equal to 4a. 

36. Suppose that f(x) > g(x) for all x in [a, b]. Does 
this imply that the length of the graph of f on 
[a, b] is greater than or equal to that for g? 
Justify your answer by a proof or an example. 

*:f337. Show that the length of the graph of sinx on 
[0.1, I] is less than the length of the graph of 
1 + x4 on [0.1, 11. 

*38. Suppose that the function f on [a,b] has an 
inverse function g defined on [a, PI. Assume 
that 0 < a < b and 0 < a < p. 

(a) Find a formula, in terms off, for the area of 
the surface obtained by revolving the graph 
of g on [a, P]  about the x axis. 

(b) Show that this formula is consistent with the 
one in formula (3) for the area of the surface 
obtained by revolving the graph of f on 
[a, b] about they axis. 

*39. Write an integral representing the area of the 
surface obtained by revolving the graph of 
1/(1 + x2) about the x axis. Do not evaluate the 
integral, but show that it is less than 2 6 a 2  
no matter how long an interval is taken. 

* 40. Craftsman Cabinet Company was preparing a 
bid on a job that required epoxy coating of 
several tank interiors. The tanks were con- 
structed from steel cylinders C feet in circumfer- 
ence and height H feet, with spherical steel caps 
welded to each end*(see Fig. 10.3.16). Specifica- 
tions required a Q-inch coating. The 20-year-old 
estimator quickly figured the cylindrical part as 
HC square feet. For the spherical cap he 
stretched a tape measure over the cap to obtain 
S ft. 

Figure 10.3.16. A cross 
section of a tank requiring 
an epoxy coating on its 
interior. 

(a) Write eqaalions wKch e m  &g @so$. .)o f;.,& 
+k S W C ~ ~  QCea o~ %k $ 4 ~ ~ 0  rap SO terms o+ 
S and C. [Hint: Revolve y = JR- 
about they axis, 0 < x < CI2z.l 

(b) WrXe e q ~ ~ o c n s  *or qir%"r~g $he ~ ~ r f ~ ~ ~  
ef#=e=kanlQ ;n terms of S,C, an& W. 

(c) Determine the cost for six tanks with 
H = 16 feet, C = 37.7 feet, S = 13.2 feet, 
given that the coating costs $2.10 per square 
foot. 

*41. (a) Calculate the area of the frustum shown in 
Fig. 10.3.17 using geometry alone. (b) Derive 
formula (3) using step functions. 

segment revolved around 
they axis becomes a 

I frustum of a cone. 
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10.4 Parametric Curves 
Arc lengths may be found by integral calculus for curves which are not graphs of 
functions. 

We begin this section with a study of the differential calculus of parametric 
curves, a topic which was introduced in Section 2.4. The arc length of a 
parametric curve is then expressed as an integral. 

Recall from Section 2.4 that aparametric curve in the xy plane is specified 
by a pair of functions: x = f(t), y = g(t). The variable t, called the parameter 
of the curve, may be thought of as time; the pair (f(t), g(t)) then describes the 
path in the plane of a moving point. Many physical situations, such as the 
motion of the Earth about the sun and a car moving on a twisting highway, 
can be conveniently idealized as parametric curves. 

Example 1 (a) Describe the motion of the point (x, y) if x = cost and y = sin t, for t in 
[O, 2 ~ 1 .  (b) Describe the motion of the point (t, t3) for t in (- oo, oo). 

Solution (a) At t = 0, the point is at (1,O). Since cos2t + sin2t = 1, the point (x, y)  
satisfies x2 + Y2 = 1, SO it moves on the unit circle. As t increases from zero, 
x = cost decreases and y = sin t increases, so the point moves in a counter- 
clockwise direction. Finally, since (cos(2~), sin(2~)) = (1, O), the point makes a 
full rotation after 2~ units of time (see Fig. 10.4.1). 
(b) We have x3 = t3 = y, so the point is on the curve y = x3. As t increases so 
does x, and the point moves from left to right (see Fig. 10.4.2). ,+& 

Figure 10.4.1. The point 
(cos t, sin t )  moves in a 
circle. 

Figure 10.4.2. The motion 
of the point ( t ,  t3). 

Example l(b) illustrates a general fact: Any curve y = f(x) which is the graph 
of a function can be described parametrically: we set x = t and y = f(t). 
However, parametric equations can describe curves which are not the graphs 
of functions, like the circle in Example l(a). 
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The equations 

x = a t + b ,  y = c t + d  

describe a straight line. To show this, we eliminate the parameter t in the 
following way. If a # 0, solve the first equation for t, getting t = (x - b)/a. 
Substituting this into the second equation gives y = c[(x - b)/a] + d; that is, 
y = (c/a)x + (ad - bc)/a, which is a straight line with slope c/a. If a = 0, 
we have x = b and y = ct + d. If c # 0, then y takes all values as t varies and 
b is fixed, so we have the vertical line x = b (which is not the graph of a 
function). If c = 0 as well as a = 0, then x = b and y = d, so the graph is a 
"stationary" point (b, d). 

Similarly, we can see that 

x = r c o s t + x , ,  y = r s i n t + y ,  

describes a circle by writing 
X - Xo -- - cos t, Y -Yo = sint. 

r r 
Therefore, 

(?)'+ (-)'= cos2t + = 1 

or (X - x,)~ + (y - = r2, which is the equation of a circle with radius r 
and center (x,, yo). As t varies from 0 to 2n, the point (x, y) moves once 
around the circle. 

x = a t + b ,  - c o < t < c o ;  
y = ct + d a and c not both zero; the line passes 

through (b, d )  with slope c/ a. 

x = rcost + x,, 0 < t & 27~; 

y = r sint + yo,  r > 0, r = radius, (x, , yo) = center. 

I Other curves can be written conveniently in parametric form as well. For 
example, 4x2 + 9y2 = 1 (an ellipse) can be written as x = cos t, y = f sin t. As 

Figure 10.4.3. The t goes from 0 to 2n, the point moves once around the ellipse (see Fig. 10.4.3). 
parametric curve General properties of ellipses are studied in Section 14.1. 
x =+cost ,y  =+sin1 The same geometric curve can often be represented parametrically in 
is an ellipse. more than one way. For example, the line x = at + b, y = ct + d can also be 

represented by 

(If we used t2, we would get only half of the line since t2 > 0 for all t.) 
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In Section 2.4 we saw that the tangent line to a parametric curve 
(x, y) = (f(t), g(t)) at the point (f(to), g(to)) has slope 

If f'(to) = 0 and gf(to) # 0, the tangent line is vertical; if f'(to) and gl(to) are 
both zero, the tangent line is not defined. Since the tangent line passes through 
( f(to), g(to)), we may write its equation in point-slope form: 

Example 2 Find the equation of the tangent line when t = 1 for the curve x = t4 + 2 6 ,  
y = sin(ta). 

Solution When t = 1, x = 3 and y = sin a = 0. Furthermore, dx/dt = 4t3 + 1 / fi, 
which equals 5 when t = 1; dy/dt = cos(ta), which equals - a when t = 1. 
Thus the equation of the tangent line is, by formula (I), 

If a curve is given parametrically, it is natural to express its tangent line 
parametrically as well. To do this, we transform equation (1) to the form 

We can set both sides of this equation equal to t, obtaining 

Equation (2) is the parametric equation for a line with slope gl(to)/f'(to) 
if f'(to) # 0. Iff' (to) = 0 but gl(to) # 0, equations (2) describe a vertical line. If 
f'(to) and g1(t0) are both zero, equations (2) describe a stationary point. 

It is convenient to make one more transformation of equations (2), so 
that the tangent line passes through (x,, yo) at the same time to as the curve, 
rather than at t = 0. Substituting t - to for t, we obtain the formulas 

x=f'(to)(t-to)+f(to), y=g1(t0)(t-to)+g(to). (3) 

Figure 10.4.4. If the forces Notice that the functions in formulas (3) which define the tangent line to a 

constraining a particle to curve are exactly the linear approximations to the functions defining the curve 

the ( f ( t ) ,  g,t)) are itself. If we think of (x, y)  = (f(t), g(t)) as the position of a moving particle, 
removed at to, then the then the tangent line at to is the path which the particle would follow if, at 
particle will follow the time to, all constraining forces were suddenly removed and the particle were 
tangent line at to. allowed to move freely in a straight line. (See Fig. 10.4.4.) 

Example 3 A child is whirling an object on a string, letting out string at a constant rate, so 
that the object follows the path x = (1 + t)cos t, y = (1 + t)sin t. 

(a) Sketch the path for 0 < t < 457. 
(b) At t = 477 the string breaks, so that the object follows its tangent line. 

Where is the object at t = 5a? 

Solution (a) By plotting some points and thinking of (x, y) as moving in an ever 
enlarging circle, we obtain the sketch in Fig. 10.4.5. 
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" t  (b) We differentiate: 

dx f'(t) = - = (1 + t)( - sin t) + cos t, and 
dt 

d~ gf(t) = - = (1 + t)cos t + sin t. 
dt 

When to = 477, we have 

f(to) = (1 + ~ T ) C O S ~ T  = 1 + 477, and g(to) = (I + 4 n ) s i n 4 ~  = 0, 

I f'(to) = (1 + 477) - 0  + 1 = 1, and g'(to) = (1 + 477) . 1 + 0 = 1 + 477. 
Figure 10.4.5. The curve By formulas (3), the equations of the tangent line are 
((l+t)costy(l+t)sint)for x =  t-477+(1 +477), y = ( 1  +4n)(t-477)+0. 
t in [O,  4 ~ 1 .  

When t = 577, the object, which is now following the tangent line, is at 
x = 1 + 577 = 16.71, y = (1 + 477)~ = 42.62. A 

Let x = f(t) and y = g(t) be the parametric equations of a curve C .  Iff 
and g are differentiable at to, and f'(to) and gf(t0) are not both zero, then 
the tarlgent line to C at to is defined by the param~iric equations: 

X = f'(to)(t - to) + f(to), Y = g'(to)(t - to) + g(t0). 

If f'(to) f 0, this line has slope gf(to)/f'(to), and its equation can be 

If f'(to) = 0 and gf(to) f. 0, the line is vertical; its equation is 

Example 4 Consider the curve x = t3 - t, y = t2. 

(a) Plot the points corresponding to t = - 2, - 1, - 4, O,;, 1,2. 
(b) Using these points, together with the behavior of the functions t2 and 

t3 - t, sketch the entire curve. 
(c) Find the slope of the tangent line at the points corresponding to t = 1 and 

t = - I .  
(d) Eliminate the parameter t to obtain an equation in x and y for the curve. 

Solution (a) We begin by making a table: 

These points are plotted in Fig. 10.4.6. The number next to each point is the 
corresponding value of t. Notice that the point (0,l) occurs for t = - 1 and 
t = l .  
(b) We plot x and y against t in Fig. 10.4.7. From the graph of x against t, we 
conclude that as t goes from - co to co, the point comes in from the left, 
reverses direction for a while, and then goes out to the right. From the graph 
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Figure 10.4.6. Some points 
on the curve ( t 3  - t ,  t2). 

Figure 10.4.7. The graphs 
of x and y plotted 
separately against t .  

of y against t, we see that the point descends for t < 0, reaches the bottom at 
y = 0 when t = 0, and then ascends for t > 0. Putting this information together 
with the points we have plotted, we sketch the curve in Fig. 10.4.8. 

Tangent line a t  ' t Tangent line a t  
t =  - 1  t =  1 

(c) The slope of the tangent line at time t is 

When t = - 1, the slope is - 1 ; when t = 1, the slope is 1. (See Fig. 10.4.8.) 

(d) We can eliminate t by solving the second equation for t to get 
t = f 6 and substituting in the first to get x = f (y3/2 - y1/2). TO obtain an 
equation without fractional powers, we square both sides. The result is 
x2 = y(y  - or x2 = y3 - 2y2 + y.  In this form, it is not so easy to predict 
the behavior of the curve, particularly at the "double point" (0,l). A 

Exarnple 5 (a) Sketch the curve x = t3, y = t2. (b) Find the equation of the tangent line at 
t = 1. (c) What happens at t = O? 

Solution (a) Eliminating the parameter t, we have y = x2l3. The graph has a cusp at the 
origin, as in Fig. 10.4.9. (Cusps were discussed in Section 3.4.) 
(b) When t = 1, we have x = t3 = 1, y = t2 = 1, dx/dt = 3t2 = 3, and dy/dt 
= 2t = 2, so the tangent line is given by 

x = 3 ( t - 1 ) + 1 ,  y = 2 ( t - 1 ) +  1. 

It has slope 3. (You can also see this by differentiating y = x ~ / ~  and setting 
x = 1.) 
(c) When t = 0, we have dx/dt = 0 and dy/dt = 0, so the tangent line is not 

Figure 10.4.9. The curve defined. .A 
( t 3 ,  t2) has a cusp at the 
origin. 
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Example 6 Consider the curve x = cos 3t, y = sin t. Find the points where the tangent is 
horizontal and those where it is vertical. Use this information to sketch the 
curve. 

Solution The tangent line is vertical when dx/dt = 0 and horizontal when dy/dt = 0. 
(If both are zero, there is no tangent line.) 

We have dx/dt = - 3 sin3t, which is zero when t = 0, m/3,2m/3, m, 4m/3, 
5n/3 (the curve repeats itself when t reaches 297); dy/dt = cost, which is zero 
when t = n/2 or 3 ~ / 2 .  We make a table: 

Using the fact that J?; /2 w 0.866, we sketch this information in Fig. 10.4.10. 
Connecting these points in the proper order with a smooth curve, we obtain 
Fig. 10.4.11. This curve is an example of a Lissajous figure (see Review 
Exercise 93 and 94 at the end of this chapter). A 

t 

x=cos3 t  

y = s i n t  

Tangent 

Figure 10.4.10. Points on 
the curve (cos 3 t ,  sin t )  with 
horizontal and vertical 
tangent. 

O r r ? T 2 7 T m  - 471 & 
3 2 3  3 2 3 

1 - 1  0 1 - 1  1 0 - 1 

J?; 0 - J?; J?; 0 - -  1 - J?; - 1  --  
2 2 2 2 

vert vert hor vert vert vert hor vert 

Figure 10.4.11. The curve 
(cos 3 t ,  sin t )  is an example 
of a Lissajous figure. 

What is the length of the curve given by (x, y) = (f(t), g(t)) for a < t < b? To 
get a formula in terms off and g, we begin by considering the case in which 
the point (f(t), g(t)) moves along the graph of a function y = h(x); that is, 
g(t> = h(f(t)). 

If f(a) = a and f (b)  = p, the length of the curve is 1 8 d m d x  

by formula (1) of Section 10.3. If we change variables from x to t in this 
integral, we have dx = f( t)  dt, so the length is 

lb Jm f ( 4  

To eliminate the function h from this formula, we may apply the chain rule to 
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g(t) = h( f(t)), getting gt(t) = ht( f(t)) . f'(t). Solving for ht( f(t)) and substitut- 
ing in the integral gives 

2 

")'+ ($) dt. 
dt (4) 

Formula (4) involves only the information contained in the parametrization. 
Y A Since we can break up any reasonably behaved parametric curve into seg- 

ments, each of which is the graph of a function or a vertical line (for which we 
see that equation (4) gives the correct length, since j"'(t) E O), we conclude that 
equation (4) ought to be valid for any parametric curve. 

Equation (4) may be derived using infinitesimals in the following way. 
Refer to Fig. 10.4.12 and note that ds2 = dx2 + dy2. Thus 

I \ 
Figure 10.4.12. Finding the d~ = = 

dt 
length of a parametric - 
curve. 

Example 7 

Solution 

Example 8 

Solution 

Integrating from t = a to t = b reproduces formula (4). 

Find the length of the circle of radius 2 which is given by the parametric 
equations x = 2 cost + 3, y = 2 sin t + 4, 0 < t < 277. 
We find f'(t) = dx/dt = -2sint and g'(t) = dy/dt = 2cost, so 

(which equals 277 times the radius). A 

Find the length of (a) x = t8, y = t4 on [l,  31 and (b) x = t sint, y = t cos t on 
[O, 4 4 .  

(a) We are given x = f(t) = t8 and y = g(t) = t4 on [I, 31; The length is 

L = ~ ~ { ( 8 1 ~ ) 2  + (4t3)2 dt= ~ ~ 4 t ~ { ( 2 t ~ ) 2  1 + 1 dt. 
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Letting u = 2t4, we have the length 

L = f L l U  J z T d U .  

Making the substitution u = tan 8, du = sec28 do, we get 

(see Fig. 10.4.13). Integrating by parts, 

I = sec 8 tan 8 - sec 8 tan2@ d8 = sec 8 tan 8 - sec 8(sec28 - 1) dB. I I 
I 

Since 
Figure 10.4.13. If tan 8 = u, 

= sec8. Isec8d8= sect). tane+seced8 = 1nItanB + sec81, I tan8 + sec8 

we get I = sec8 tan8 - I + lnltane + sec8 1 + C. Thus 

J L 

(Compare Example 3, Section 10.3.) Putting everything together in terms of u, 

(b) If x = tsint and y = tcost, dx/dt = sint + tcost and dy/dt = cost - 
t sin t. Therefore, 

( $)i+ ( g)2 = sin2t + 2t sin t bos t + t2cos2t + cos2t - 2t sin t cos t + t2sin2t 

= 1 + t2. 
Thus, using (a), the length is 

Example 9 Show that if x = f(t) and y = g(t) is any curve with (f(O), g(0)) = (0,O) and 
(f(l), g(1)) = (0, a), then the length of the curve for 0 < t < 1 is at least equal 
to a. What can you say if the length is exactly equal to a? 

Solution It is evident that [g(t)I2 < [f'(t)12 + [g'(t)]2, SO 

Integrating from 0 to 1, we have 

By the fundamental theorem of calculus, the left-hand side is equal to 
g(1) - g(0) = a - 0 = a;  the right-hand side is the length L of the curve, 
so we have a < L. If a = L, the integrands must be equal; that is, 

gr(t) = d m ,  which is possible only if f'(t) is identically zero; that 

is, f(t) is constant. Since f(0) = f(1) = 0, we must have f(t) identically zero; 
that is, the point (x, y) stays on they axis. 

We have shown that the shortest curve between the points (0,O) and (0, a) 
is the straight line segment which joins them. A 

Copyright 1985 Springer-Verlag.  All rights reserved.



10.4 Parametric Curves 497 

Given a point moving according to x = f(t), y = g(t), the integral 

is the distance (along the curve) travelled by the point between time a and 
time t. The derivative D1(t) should then represent the speed of the point along 
the curve. By the fundamental theorem of calculus (alternative version), we 
have 

Let a point move according to the equations x = f(t), y = g(t). Then the 
speed of the point at time t is 

Example 10 

Solution 

Example 11 

Figure 10.4.14. Investigate 
how a bulge on a tire 
moves. 

Suppose that an object is constrained to move along the curve x = f(t), 
y = g(t) and that at time to the constraining forces are removed, so the particle 
continues along the tangent line 

x = f'(to)(t - to) + f(to), Y = gl(to)(t - to) + g(t0). 

At time to + At, the particle is at (f'(to) At + f(to), gf(to) At + g(to)), which is 

at distance d m ~ t  from (f(to), g(to)). Thus the distance trav- 

elled in time At after the force is removed is equal to At times the speed at to, 
so we have another justification of our formula for the speed. 

A particle moves around the elliptical track 4x2 + y2 = 4 according to the 
equations x = cost, y = 2 sin t. When is the speed greatest? Where is it least? 

The speed is 

d(cost) d(2 sin t) 

dt --I+[ dt I = J&ZTTLZ= JGZGGZ. 

Without any further calculus, we observe that the speed is greatest when 
cost = + 1; that is, t = 0, n, 2n, and so forth. The speed is least when 
cost = 0; that is, t = a/2, 3n/2, 5n/2, and so on. A 

The position (x, y) of a bulge in a bicycle tire as it rolls down the street can be 
parametrized by the angle 8 shown in Fig. 10.4.14. Let the radius of the tire be 
a. It can be verified by methods of plane trigonometry that x = a8 - a sine, 
y = a - a cos 8. (This curve is called a cycloid.) 

(a) Find the distance travelled by the bulge for 0 < 8 < 257, using the identity 
1 - cos8 = 2 sin2(8/2). This distance is greater than 2na (distance the tire 
rolls). 

(b) Draw a figure for one arch of the cycloid, and superimpose the circle of 
radius a with center at (na, a), together with the line segment 0 < x < 2na 
on the x axis. Show that the three enclosed areas are each na2. 
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Solution (a) The distance d is the arc length of the cycloid for 0 < 0 B 2n. Thus, 

(b) Refer to Fig. 10.4.15. The total area beneath the arch is 

Figure 10.4.15. One arch of 
the cycloid. 

The area of the circle is na2, so by symmetry each of the other two congruent 
regions also has area na2. A 

- - 

Exercises for Section "1.4 
For the parametric curves in Exercises 1-4, sketch the 
curve and find an equation in x and y by eliminating 
the parameter. 

1. x = 4 t - 1 , y = t + 2 .  
2. x = 2t + 1, y = t2. 
3. x =cosB+ l ,y=s in0 .  
4. x=s in0 ,y=cosB-3 .  

Find a parametric representation for each of the curves 
in Exercises 5- 12. 

5. 2x2 + Y2 = 1. 6. 16x2 + 9y2 = 1. 
7. 4xy = 1.  8. y = 3 x - 2 .  
9. y = x 3 +  1. 10. 3x2 - y2 = 1. 

1 1. y = cos(2x). 12. y2 = x + x2. 
Find the equation of the tangent line to each of the 
curves in Exercises 13-16 at the given point. 

13. x = f t2 + t, y = t213; to = I. 
14. x = l / t ,  y =\It; to = 2. 
15. x = cos2(t/2), y = fsint; to = a/2. 
16. x = 0 - s i n 0 , y =  1 -cos6; B0=a/4. 

17. A bead is sliding on a wire, having position 
x = (2 - 3t)2, y = 2 - 3t at time t. If the bead 
flies off the wire at time t = 1, where is it when 
t = 3? 

18. A piece of mud on a bicycle tire is following the 
cycloid x = 6t - 3 sin 21, y = 3 - 3 cos 2t. At 
time t = a/2, the mud becomes detached from 
the tire. Along what line is it moving? (Ignore 
gravity .) 

Sketch each of the parametric curves in Exercises 19- 
22, find an equation in x and y by eliminating the 
parameter, and find the points where the tangent line is 
horizontal or vertical. 

19. x = t2; y = cost. (What happens at t = O?) 
20. x = a/2  - s; y = 2 sin 2s. 
21. x = c o s 2 t ; y = s i n t .  
22. (x, y) = (cos t, sin 2t). 

23. Find the length of x = t2, = t3 on [0, I]. 
24. Find the length of the curve given by x = f sin 2t, 

y = 3 + cos2t on [0, a]. 
25. Find the length of the curve (t2, t4) on 0 < t < 1. 
26. Find the length of the parametric curve 

(et(cos t ) m ,  2er(cos t ) m )  on [O, 11. 
27. Show that if x = acost  + b and y = as in t  + d: 

(a) the speed is constant; (b) the length of the 
curve on [to, t,] is equal to the speed times the 
elapsed time (t, - to). 

28. An object moves from left to right along the 
curve y = x312 at constant speed. If the point is 
at (0,O) at noon and at (1, I) at 1:00 P.M., where 
is it at 1:30 P.M.? 

29. Consider the parametrized curve x = 2 cos 0, 
y =  0 -  sine. 
(a) Find the equation of the tangent line at 

0 = a/2. 
(b) Sketch the curve. 
(c) Express the length of the curve on [0, a]  as 

an integral. 
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30. Show that if 

then the speed of the curve x = f(t), y = g(t) is 
constant. 

31. A particle travels a path in space with speed 
s(t) = sin2(.irt) + tan4(.irt)sec2(.irt). Find the dis- 
tance JhOs(t)dt travelled in the first ten seconds. 

32. A car loaded with skiers climbs a hill to a ski 
resort, constantly changing gears due to varia- 
tions in the incline. Assume, for simplicity, that 
the motion of the auto is planar: x = x(t), and 
y = y(t), 0 < t < T. Let s(t) be the distance trav- 
elled along the road at time t (Fig. 10.4.16). 

I 

Figure 10.4.16. A car on its 
way to a ski cabin. 

(a) The value s(10) is the difference in the 
odometer readings from t =. 0 to t = 10. Ex- 
plain. 

(b) The value s'(t) is the speedometer reading at 
time t. Explain. 

(c) The value y'(t) is the rate of change in 
altitude, while x'(t) is the rate of horizontal 
approach to the resort. Explain. 

(d) What is the average rate of vertical ascent? 
What is the average speed for the trip? 

33. A child walks with speed k from the center of a 
merry-go-round to its edge, while the equipment 
rotates counterclockwise with constant angular 
speed w. The motion of the child relative to the 
ground is x = kt cos at, y = kt sin at. 
(a) Find the velocities P = dx/dt, y = dy/dt. 
(b) Determine the speed. 
(c) The child experiences a Coriolis force oppo- 

site to the direction of rotation, tangent to 

the edge of the merry-go-round. The magni- 
tude of this force is the mass m of the child 

times the factor \lx(o', where i 
= d2x/dt2. Find this force. 

*34. (a) Find a parametric curve x = f(t), y = g(t) 
passing through the points (1, l), (2,2), 
(4,2), (5, I), (3, O), and (1,l) such that the 
functions f and g are both piecewise linear 
and the curve is a polygon whose vertices 
are the given points in the given order. 

(b) Compute the length of this curve by formula 
(4) and then by elementary geometry. Com- 
pare the results. 

(c) What is the area of the surface obtained by 
revolving the given curve about the y axis? 

*35. At each point (x,, yo) of the parabola y = x2, the 
tangent line is drawn and a point is marked on 
this line at a distance of 1 unit from (x,, yo) to 
the right of (x,, yo). 
(a) Describe the collection of points thus ob- 

tained as a parametrized curve. 
(b) Describe the collection of points thus ob- 

tained in terms of a relation between x and 

Y. 
*36. If x = t and y = g(t), show that the points where 

the speed is maximized are points of inflection of 
Y = g(x). 

*37.'(a) Looking at a map of the United States, 
estimate the length of the coastline of 
Maine. 

(b) Estimate the same length by looking at a 
map of Maine. 

(c) Suppose that you used detailed local maps 
to compute the length of the coastline of 
Maine. How would the results compare with 
that obtained in part (b)? 

(d) What is the "true" length of the coastline of 
Maine? 

(e) What length for the coastline can you find 
given in an atlas or almanac? 

*38. On a movie set, an auto races down a street. A 
follow-spot lights the action from 20 meters 
away, keeping a constant distance from the auto 
in order to maintain the same reflected light 
intensity for the camera. The follow-spot location 
(x, y) is the pursuit curve 

called a tractrix. Graph it. 

For further information on the ideas in this exercise, see B. Mandelbrot, Fractals: Form, Chance and Dimension, Freeman, New 
York (1977). 
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10.5 Length and Area 
On Polar Coordinates 
Some length and area problems are most easily solved in polar coordinates. 

Figure 10.5.1. The length of 
the curve is 

The formula L =LbJ(dx/dt)' + (dy/dt)' dt for the length of a parametric 

curve can be applied to the curve r = f(9) in polar coordinates if we take the 
parameter to be 9 in place of t. We write: 

x = r c o s 8 =  f(9)cosO and y=rsin8=f(B)sinO. 

Suppose that 9 runs from a to @ (see Fig. 10.5.1). By formula (4) of Section 
10.4, the length is 

LB J[ f ( e ) c o s ~  - f ( ~ ) s i n ~ ] ' +   sin^ sin^ + f ( e ) ~ ~ s o ] ~  do 

which simplifies to 

Arc Length in Polar Coordinates 
The length of the curve r = f(9), a < 0 < @, is given by 

L=S' a ,/'=do= (1) 

One can obtain the same formula by an infinitesmal argument, following Fig. 
10.5.2. By Pythagoras' theorem, ds2 = dr2 + (rde)', or ds = I/-. If 
we use dr = f'(0) do, this becomes 
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infinitesimal element of arc 
length ds equals 
J-. 
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' t 

Example 1 Find the length of the curve r = 1 - cos 8, 0 < 8 < 27~. 

Solution We find dr/dB = sine, so by equation (I), 

~ 2 ~ 2 ; i n g d 8 = 4  2 I," sinudu (u=:) 

Example 2 Find the length of the cardioid r = 1 + cos8 (0 < 8 < 2n). 

Solution (This curve is sketched in the accompanying figure.) The length is 

1 -  This can be simplified, by the half-angle formula cos2(8/2) = (1 + cos 8)/2, to 

( a  I L = L  2n 2 ~ 0 ~ ~ d 8 = 0 .  8 

Something is wrong here! We forgot that cos(8/2) can be negative, while the 
square root must be positive; i.e., 

J T C G 3  = { 4 7  = 21~0s 1 .  
The correct evaluation of L is as follows: 

L =1,'"21cos: l d 8 = p c o s f  do-I, 217 2 cos - 8 dB 
2 

(a) r = 1 + cos6' 
("cardioid"): 

since cos(8/2) > 0 on (0,n) and cos(8/2) < 0 on (n, 27r). Thus 

(b)  r =  I +2cosB 
("lirnaqon"). 

The curve expressed in polar ,coordinates by the equation r = f(8), together 
with the rays 8 = a and 8 = p, encloses a region of the type shown (shaded) in 
Fig. 10.5.3. We call this the region inside the graph off on [a, PI. 
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Figure 10.5.3. The region 
inside the graph r = f(6) on 

I [a, P ]  is shaded. 
X 

We wish to find a formula for the area of such a region as an integral 
involving the function f. We begin with the simplest case, in which f is a 
constant function f(0) = k. The region inside the curve r = k on [a, P ]  is then 
a circular sector with radius k and angle P - a (see Fig. 10.5.4). The area is 
( p  - a)/2n times the area nk2 of a circle of radius k, or 4 k2(p - a). We can 
express this as the integral Jfi f(0)2 dB. 

Iff is a step function, with f(0) = ki, on (0,-,,0,), then the region inside 
the graph off is of the type shown in Fig. 10.5.5. Its area is equal to the sum 
of the areas of the individual sectors, or 

By approximating f with step functions, we conclude that the same formula 
holds for general f. 

Figure 10.5.5. The area of 
the shaded region is 
c f k; ~ 6 ,  

Figure 10.5.4. The area of 
the sector is f k2( /3 - a). 

I Area in Polar Coordinates I 
The area of the region enclosed by the curve r = f(0) and the rays 0 = a 
and 0 = p is given by 

This formula can also be obtained by an infinitesimal argument. Indeed, 
the area dA of the shaded triangle in Fig. 10.5.2 is ;(base) X (height) 
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= $(r d0)r = 4 r2 do, SO the area inside the curve is 

which agrees with the formula in the preceding box. 

Example 3 Find the area enclosed by one petal of the four-petaled rose r = cos 29 (see 
Fig. 5.6.3). 

Solution The petal shown in Fig. 10.5.6 is enclosed by the arc r = ~ 0 ~ 2 8  and the rays 
9 = - n-/4 and 9 = ~ / 4 .  Notice that the rays do not actually appear in the 
boundary of the figure, since the radius r = cos(2 n-/2) is zero there. The area 
is given by $y/://,r2d9 = $~_/,4//,cos229d9. By the half-angle formula this is 

Figure 10.5.6. One leaf of I / 
/ / ( j = n  the four-petaled rose / 4 

r = cos 26. 1 / 

Example 4 Find the area enclosed by the cardioid r = 1 + cos9 (see Fig. 5.6.6). 

Solution The area enclosed is defined by r = 1 + cos 9 and the full range 0 < 9 < 2n-, so 

Again using the half-angle formula, 

Example 5 Find a formula for the area between two curves in polar coordinates. 

Solution Suppose r = f(9) and r = g(9) are the two curves with f(9) > g(0) > 0. We 

'I are required to find a formula for the shaded area in Fig. 10.5.7. The area is 
just the difference betweeen the areas for f and g; that is, 

1 P A = - l [ ~ ( e  - g(e 12] do. A 
2 

Figure 10.5.7. The area of 
the shaded region is 
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Example 6 Sketch and find the area of the region between the curves r = cos28 and 
r = 2 + s i n t ? , O <  8 < 2 m .  

Solution The curves are sketched in Fig. 10.5.8. To do this, we plotted points for 8 at 
multiples of n/4 and then noted whether r was increasing or decreasing on 
each of the intervals between these 8 values. To find the shaded area, we must 
be careful because of the sign changes of g(8) = cos28. The inner loops are 
described in the following way by positive functions: 

12n[ (2  + sin 8 )2 - cos228] do 
2 

g ( @ ) = -  

= [62n4 d8 + i25 sin 8 d8 + 12\in28 d8 - 6 2 7 i ~ o ~ 2 2 ~  do] 

7T 3 n -cos28, 
4 

~ 0 ~ 2 8 ,  $ < Q < ~ .  5n 

- cos 28, 77T 5 " < 0 < ~  4 

cos 28, 3 < 8 < 2 n  
4 

C 

Exercises for Section "1.5 

In fact, we are lucky because in the formula in Example 5, g(8) is squared 
anyway, so the shaded area is simply 

Find the length of the curves in Exercises 1-4. 
1. r = 3(1 +sine);  0 < 6 < 2a. 
2. r = I/(cos 6 + sin 8); 0 < 6 < a/2. 
3. r = 482; 0 < 0 < 3. 
4. r = 802; 0 < 8 < 1. 

Sketch and find the area of the region bounded by the 
curves in Exercises 5-10. 

5. r = 3 s i n 6 ; 0 < 6 < a .  
6. r = 2(1 + sine); 0 < 6 < 2 ~ .  
7. r = 8; 0 < 8 < 3a/2. 
8. r = B c o ~ ( 6 ~ ) ;  0 < 6 < a/4. 
9. r = 4 + s i n 8 ; 0 < 6 < 2 a .  

10. r = 6 + sin48; a / 4  < 8 < a. [Hint: Find the 
critical points of r.] 

11. Check the arc length formula in polar coordi- 
nates for a circle. 

12. Check the area formula in polar coordinates for 
a segment of a circle and a whole circle. 

In Exercises 13-16, sketch and find the length (as an 
integral) of the graph of r = f(6), a < 6 < P. (The 
answer may be in the form of an integral.) Then find 
the area of the region bounded by this graph and the 
rays 6 = a and 6 =  ,8. 

13. r = tan(6/2); - a/2  < 0 < a/2. 
14. r = 6 + sin(02); - a /4  < 6 < 3a/4. 
15. r = s e c 6 + 2 ;  0 < 6 < a/4. 
16. r = 2e3'; In 2 < 6 < In 3. 

In Exercises 17-20, find the length of and areas 
bounded by the following curves between the rays 
indicated. Express the areas as numbers but leave the 
length as integrals. 

17. r = 6(i + cos6); 6 = 0, 6 = a/2. 
18. r = 1/8; 6 = 1, 6 = a .  

19. f(6) =dl  + 2sin26 ; 6 = 0, 6 = a/2. 
20. f(6) = o 2  - (a/2)6 + 4; 8 = 0, 6 = a/2. 

In Exercises 21-24, sketch and find the area of each of 
the regions between each of the following pairs of 
curves (0 < 6 < 2a). Then find the length of the curves 
which bound the regions. 

21. r = cos6, r =os inB.  
22. r = 3, r = 2(1 + cos8). 
23. r = 2cos6, r = 1 + cos6. 
24. r = 1, r =  1 +cosO. 

25. The curve r = ee is called a logarithmic spiral. 
Find the length of the loop of the logarithmic 
spiral for 0 in [2na, 2(n + 1)al. 
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26. Suppose that the distance from the origin to 
(x, y) = (f(t), g(t)) attains its maximum value at 
t = to. Show that the tangent line at to is perpen- 
dicular to the line from the origin to the point 
(f(Io), g(to)). 

*27. An elliptical orbit is parametrized by x = a cos 8, 
y = b sine, 0 < 8 < 257. This parametrization is 
2n-periodic. In Chapter 18 we shall show that for 
any T-periodic parametrization of a continuously 
differentiable closed curve x = x(t), y = y(t4 
which is a simple (never crosses itself), 

area enclosed = - [x(t)y (I) - i( t)Y(t)]  dt, I T :  
where i ( f )  = dx/dt and y(t) = dy/dt. (See also 
Review Exercise 95 for this Chapter.) 
(a) Use this formula to verify that the area 

enclosed by an ellipse of semiaxes a and b is 
nab. 

(b) Apply the formula to the case of a curve 
x(t) = r cos t, y(t) = r sin t, where r = r ( t ) ,  
showing that the area enclosed is +JTr2dt. 

Review Exercises for Chapter 11 0 
Evaluate the integrals in Exercises 1-50. 

I .  J3 sin2x cos x dx 

2. Jsin22x cos32x dx 

3. [sin3xcos5xdx 

4. jcos lx sin 6x dx 

33. Jsin 3x cos 2x dx 

35. J & dx 

e L  37. 1 - dx 
6 

39. J3--5-- dx 
2 x 2 + 1  

41. J &dx 

43. Jx31nxdx 

47. L'sinh2x dx 48. sine 

sine 49. kr 
1 + cos e + c0s2e 

50. r/ '%ecqOOx dx 

In Exercises 51-54, find the length of the given graph. 
51. y=3x3l2,  O <  x < 9 
52. y = (x + 1)3/2 + 1, 0 < x < 2. 

x3 1 
16. (sec68de 5 3 . y = -  3 + - , 1 < x < 2 .  4x 

dx x4 1 
18. ( 54. y = - + -  I <  4 8x2' 

, x < 2. 
1 + cosax 

20. dx 
In Exercises 55-58, find the area of the surface ob- 

J- tained by revolving the given graph about the given 
axis. 

22. Jln(") dx 55. y = x2, 0 < x < 1, about they axis. 
x - a  56. y = fi, 0 < x < 1, about the x axis. 

57. y = loglox, 10 < x < 100, about they axis. 
58. y = 2", 3 < x < 4, about the x axis. 
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For each o f  the pairs o f  parametric equations in Exer- 
cises 59-64, sketch the curve and find an equation in x 
and y by eliminating the parameter. 

59. ~ = t ~ ; ~ = t -  1 60. x = 2 t + 5 ; y = t 3  
61. x = 3 t ; y = 2 t + 1  62. x = t ; y = t  
63. x = 0; y = t4 64. x = t 2 m ;  y = t2  

65. Find the equation of  the tangent line to the curve 
x = t 4 , y = 1 + t 3 a t t = 1 .  

66. Find the equation of  the tangent line to the 
parametric curve x = 3 cost, y = sin t at t = n/4.  

67. Find the arc length o f  x = t2, y = 2t4 from t = 0 
to t = 2. 

68. Find the length o f  x = e'sin t ,  y = e'cost from 
t = 0 to t = " /2 .  

Find the arc length (as an integral i f  necessary) and 
area enclosed by each o f  the graphs given in polar 
coordinates in Exercises 69-74. 

69. r = e2; 0 < 0 < " '2' 
. O < B < "  70. r = - 

cos e ' ' 4 '  
71. r = 5 + cos20; 0 < 0 < n. 

72. r = 21cos 0 1; 0 < 19 < 257. 
4 e 73. r=3cos  - ; O < B < a .  

4 
1 . 2 8  T 3 77 74. r=-s in  2 ;  < 6 < T .  
2 

I f f  is a function on [O,2n], then the numbers 

are called the Fourier coefficients of  f .  Find all the 
Fourier coefficients o f  each o f  the functions in Exer- 
cises 75-82. 

75. sin2x 76. sin 5x 
77. cos3x 78. cos8x 
79. 3 cos 4x 80. 2 cos 8x + sin 7 x  + cos 9x 
81. sin2x 82. cos3x 
83. The solution o f  the logistic equation of  population 

biology, dN/dt = ( k ,N  - k2)N, N(0) = No, re- 
quires the evaluation of  the definite integral 

(a) Evaluate by means o f  partial fraction meth- 
ods and compare your answer with Exercise 
19, Section 8.5. 

(b)  The integral is just the time t. Solve for N( t )  
in terms o f  t ,  using exponentials. 

(c) Find lim,,,N(t) when it exists. 
84. Kepler's second law of planetary motion says 

that the radial segment drawn from the sun to a 
planet sweeps out equal areas in equal times. Lo- 
cate the origin (0,O) at the sun and introduce 
polar coordinates ( y ,  0 )  for the planet location. 
Assume the angular momentum o f  the planet (o f  
mass m) about the sun is constant; mr26 = mk, 

k =constant, and 6 = dO/dt. Establish Kepler's 
second law by showing fi+hr26 dt is the same for 
all times s; thus the area swept out is the same 
for all time intervals of  length h. 

85. An elliptical satellite circuits the earth in a circu- 
lar orbit. The angle + between its major axis and 
the direction to the earth's center oscillates be- 
tween ++m and -+m (librations o f  the earth 
satellite). It is assumed that 0 < +m < m/2, so 
that the satellite does not tumble end over end. 
The time T for one complete cycle of  this oscilla- 
tion is given by 

4 T =  - d+ " O Jcos 29 - cos 2+m 

Change variables in the integral via the formulas 

sin + = sin &sin p (which defines ,8 ), 

cos 29 = 1 - 2 sin2+, 

to obtain the elliptic integral representation 

for the period of  libration T,  where k 2  = 
*86. An engineer is studying the impact o f  an infinite 

bar by a short round-headed bar, making a max- 
imum indentation a, .  Applying Hertz' theory of  
impact, she obtains the equation & pc08a1 
= k(a?l2 - a3I2) for the indentation a at time t. 
The symbols p, c,, 8, k are constants. The equa- 
tion is solved by an initial integration to get 

(a) Evaluate the integral by making the substi- 
tution v =fi, followed by the method of  
partial fractions. 

(b)  Substitute s = (4tk&)/(3pco8) to obtain 

where y = J a / a ,  . 
*87. Find a general formula for fdx/Jax2 + bx + c ; 

a f 0. There will be two cases,' depending upon 
the sign of  a. 

*88. Let f ( x )  = x n ,  0 < a < x < b. For which ra- 
tional values of  n can you evaluate the integral 
occurring in the formula for: 
(a) The area under the graph o f f ?  
(b) The length of  the graph o f f ?  
(c) The volume of the surface obtained by re- 

volving the region under the graph of f 
about the x axis? T h e y  axis? 
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(d) The area of the surface of revolution ob- 
tained by revolving the graph off about the 
x axis? They axis? 

Evaluate these integrals. 
n89. Same as Exercise 88, but with f(x) = 1 + x". 
n90. Same as Exercise 88, but with f(x) = (1 + x2)". 
n91. (a) Find the formula for the area of the surface 

obtained by revolving the graph of r = f(8) 
about the x axis, (Y < 8 < p. 
(b) Find the area of the surface obtained by 
revolving r = cos 28, - n/4 < 8 < n/4 about 
the x axis (express as an integral if necessary). 

*92. Consider the integral 

(a) Show that, for k = 0 and k = 1, this integral 
can be evaluated in terms of trigonometric 
and exponential functions and their in- 
verses. 

(b) Show that, for any k, the integral may be 
transformed to one of the form 

(This integrand occurs in the sunshine for- 
mula-see the supplement to Section 9.5.) 

(c) Show that the integral 

(which also occurs in the sunshine formula) 
arises when one tries to find the arc length 
of an ellipse x2/a2 + y2/b2 = 1. Express k 
in terms of a and b. 

Due to the result of part (c), the inte- 
grals in parts (a), (b), and (c) are called 
elriptic integrals. 

n93. Consider the parametric curve given by x 
= cos mt, y = sin nt, when m and n are integers. 
Such a curve is called a Lissajous figure (see 
Example 6 ,  Section 10.4). 
(a) Plot the curve for m = 1 and n = 1,2,3,4. 
(b) Describe the general behavior of the curve if 

m = 1, for any value of n. Does it matter 
whether n is even or odd? 

(c) Plotthecurveform=2andn=1,2,3,4,5.  
(d) Plot the curve for m = 3 and n = 4,5. 

+94. (Lissajous figures continued). The path x = x(t), 
y = y(t) of movement of the tri-suspension pendu- 
lum of Fig. 10.R.l produces a Lissajous figure 
of the general form x = A,cos(o,t + el), y = 
A2sin(w2t + Oo). 

Review Exercises for Chapter 10 507 

Figure 10.R.l. The bob on 
this pendulum traces out a 
Lissajous figure. 

(a) Draw the Lissajous figures for w, = o2 = 1, 
A, = A2, for some sample values of 8,,02. 
The figures should come out to be straight 
lines, circles, ellipses., 

(b) When o ,  = 1, w2=3, Al = A2= 1, the bob 
retraces its path, but has two self-inter- 
sections. Verify this using the results of Ex- 
ercise 93. Conjecture what happens when 
w,/o, is the ratio of integers. 

(c) When w 2 / o l  = n, A, = A2 = 1, the bob 
does not retrace its path, and has infinitely 
many self-intersections. Verify this, graphi- 
cally. Conjecture what happens when 0 2 / w l  
is irrational (not the quotient of integers). 

n95. Consider the curve r = f(8) for 0 < 8 < 2 s  as a 
parametric curve: x = f(t)cos t, y = f(t)sin t. As- 
suming that f(8) > 0 for all 8 in [O,2n] and that 
f(2n) = f(O), show that the area enclosed by the 
curve i ~ - ~ i v e n  by 

as well as by jFx(dy/dt) dt and by the more 
symmetric fbrmula 

[Hint: Substitute the definitions of x and y into 
(A), integrate by parts, and use the formula for 
area in polar coordinates.] These formulas are in 
fact valid for any closed pammetric curve. (See 
Section 18.4.) 

+96. (a) If r is a non-repeated root of Q(x), show that 
the portion of the partial fraction expansion of 
P(x)/Q(x) corresponding to the factor x - r is 
A/(x - r) where A = P(r)/Qf(r). (b) Use (a) to 
calculate ([(x2 + 2)/(x3 - 6x + 11x - 6)] dx. 
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Chapter 11 

Limits, CH6pita 

Numerica Methods 
Limits are used in both the theory and applications of calculus. 

Our treatment of limits up to this point has been rather casual. Now, having 
learned some differential and integral calculus, you should be prepared to 
appreciate a more detailed study of limits. 

The chapter begins with formal definitions for limits and a review of 
computational techniques for limits of functions, including infinite and one- 
sided limits. The next topic is l'H6pital's rule, which employs differentiat~on to 
compute limits. Infinite limits are used to study improper integrals. The 
chapter ends with some numerical methods involving limits of sequences. 

1 I ."8Llmits of Functions 
There are many kinds of limits, but they all obey similar laws. 

In Section 1.2, we discussed on an intuitive basis what lim,,,o f ( x )  means and 
why the limit notion is important in understanding the derivative. Now we are 
ready to take a more careful look at limits. 

Recall that the statement lim,,,o f ( x )  = I means, roughly speaking, that 
f ( x )  comes close to and remains arbitrarily close to 1 as x comes close to x,. 
Thus we start with a positive "tolerance" E and try to make f (x )  - I \  less than 
E by requiring x to be close to x,. The closeness of x to x, is to be measured 
by another positive number-mathematical tradition dictates the use of the 
Greek letter S for this number. Here; then, is the famous E-S definition of a 
limit-it was first stated in this form by Karl Weierstrass around 1850. 

Let f be a function defined at all points near x,, except perhaps at x, 
itself, and let I be a real number. We say that I is the limit of f ( x )  as x 
approaches xo if, for every positive number E, there is a positive number S 
such that I f ( x )  - 11 < E whenever Ix - x,l < S and x f x,. We write 

The purpose of giving the 8-6 definition is to enable us to be more precise in 
dealing with limits. Proofs of some of the basic theorems in this chapter and 
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the next require this definition; however, practical computations can often be 
done without a full mastery of the theory. Your instructor should tell you how 
much theory you are expected to know. 

The e-6 definition of limit is illustrated in Figure 11.1.1. We shade the 
region consisting of those (x, y) for which: 

1. I X  - xol > 6 (region I in Fig. 1 l.l.l(b)); 
2. x = x, (the vertical line I1 in Fig. 1 1. 1. l(b)); 
3. x # x,, Ix - xol < 6, and 1 y - I I < e (region I11 in Fig. 1 1. l.l(b)). 

Figure 11.1.1. When 
lim,,,o f(x) = 1, we can, 
for any E > 0, catch the 
graph off in the shaded 
region by making 8 small 
enough. The value off a t  x0 
is irrelevant, since the line (a) 

x = xo is always "shaded." 6 no t  small enough 

(b)  
6 small enough 

If lim,,xo f(x) = I, then we can catch the graph off in the shaded region 
by making 6 small enough-that is, by making the unshaded strips sufficiently 
narrow. 

Notice the statement x # x, in the definition. This means that the limit 
depends only upon the values of f(x) for x near xo, and not onf(x,) itself. (In 
fact, f(xo) might not even be defined.) 

Here are two examples of how the E-8 condition is verified. 

Exarnple 1 (a) Prove that limX,,(x2 + 3x) = 10 using the e-6 definition. (b) Prove that 

limx.+,& = 6, where a > 0, using the E-6 definition. 

Solution (a) Here f(x) = x2 + 3x, xo = 2, and I = 10. Given e > 0 we must find 6 > 0 
such that I f(x) - 11 < E if I X  - x,,I < 6. 

A useful general rule is to write down f(x) - I and then to express it in 
terms of x - x, as much as possible, by writing x = (x - x,) + x,. In our case 
we replace x by (x - 2) + 2: 

Now we use the properties la + bl < (a1 + I bl and (a2[ = laI2 of the absolute 
value to note that 

I f(x) - 11 < ( X  - 212 + 71x - 21. 

If this is to be less than E, we should choose 6 so that a2  + 76 < e. We may 
require at the outset that 6 < 1 .  Then S2 < 6, so S2 + 76 < 86. Hence we pick 
6 so that 6 < 1 and 6 < e/8. 

With this choice of 6, we shall now verify that I,f(x) - 11 < E whenever 
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I X  - xol < 6. In our case ( x  - xol < 6 means Ix - 21 < 6, so for such an x, 

I f(x) - lI < I X  - 212 + 71x - 21 

< a 2  + 76 
< 6 + 7 6  
= 86 
< E, 

and so I f(x) - I /  < E. 

( b ) ~ e r e  f ( x ) = & , x o = a ,  and l = 6 .  Given E > O  wemust f inda6 > O  
such that 16 -61 < E when Ix - a1 < 6. To do this we write 6 -6 
= (X - a)/(& + 6 ) .  Since f is only defined for x > 0, we confine our 
attention to these x's. Then 

16-61 = 
I X  - al <- I X  - a[ (decreasing the denominator increases the fraction). 
64-6 6 

Thus, given E > 0 we can choose 6 = 6 E; then Ix - a1 < 6 implies 16 - 6 I 
< E, as required. A 

In practice, it is usually more efficient to use the laws of limits ,than the 8-8 
definition, to evaluate limits. These laws were presented in Section 1.3 and are 
recalled here for reference. 

Basic Properties ab Limits I 
Assume that limxjxo f(x) and limxjxog(x) exist: 

Sum rule: 

lim [ f(x) + g(x)] = ) i % o f ( ~ )  + Ji%o g(x). 
x+xo 

Product rule: 

~ i m  [ f (x)g(x)] = J ~ T ~  f (XI );yo g(x)- 
x+xo 

Reciprocal rule: 

Iim [ I / f (x) ] = I / Jilo f (x) if lim f (x) + 0. 
X+X0 x-fxo 

Constant functiorz rule: 

lim c =  c. 
X+XO 

Identity function rule: 

lim x = xo . 
x+xo 

Replacement rule: If the functions f and g agree for all x near xo 
(not necessarily including x = x,), then 

Rational functional rule: If P and Q are polynomials and Q(x,) + 0, 
then P / Q  is continuous at x,; i.e., 

lim [P(x)/ Q(x)] = P(xo)/ Q(xo)- x+xo 

Composite function rule: If h is continuous at limx,xo f(x), then 

lim h (f (x)) = h ( lim f (x)). x+xo x+xo 
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The properties of limits can all be proved using the E-6 definition. The 
theoretically inclined student is urged to do so by studying Exercises 75-77 at 
the end of this section. 

Let us recall how to use the properties of limits in specific computations. 

Example 2 Using the fact that lim 
e+o 

( '-7') = 0, find limcos 
8+0 

Solution The composite function rule says that lirnx,,)( f(x)) = h(limx,xo f(x)) if h is 
continuous at limXjxo f(x). We let f(8) = (I - cosO)/B, and h(8) = cosB so 
that h(f(8)) = cos[(l - cos 8)/8]. Hence the required limit is 

since cos is continuous at 8 = 0. A 

Example 3 Find (a) lim 
i+2 ( X' ; y: ) and (b) lim 

Solution (a) Since the denominator vanishes at x = 2, we cannot plug in this value. The 
numerator may be factored, however, and for any x f 2 our function is 

Thus, by the replacement rule, 

(b) Again we cannot plug in x = 1. However, we can rationalize the denom- 
inator by multiplying numerator and denominator by & + 1. Thus (if x f 1): 

As x approaches 1, this approaches 2, so limx,,[(x - 1 ) / ( 6  - l)] = 2. A 

Limits .of the form lirn,,,, f(x), called limits at infinity, are dealt with by a 
modified version of the ideas above. Let us motivate the ideas by a physical 
example. 

Let y  = f(t) be the length, at time t, of a spring with a bobbing mass on 
the end. If no frictional forces act, the motion is sinusoidal, given by an 
equation of the form f(t) = y o  + a cos ot.' In reality, a spring does not go on 
bobbing forever; frictional forces cause damping, and the actual motion has 
the form 

where b is positive. A graph of this function is sketched in Fig. 11.1.2. 
As time passes, we observe that the length becomes and remains arbitrar- 

ily near to the equilibrium length yo. (Even though y  = y o  already for t 
= 7~/2o, this is not the same thing because the length does not yet remain 
near yo.) We express this mathematical property of the function f by writing 
lim,,, f(t) =yo .  The limiting behavior appears graphically as the fact that the 

' This is derived in Section 8.1., but if you have not studied that section, you should simply take 
for granted the formulas given here. 
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Y O  + a  

Y  0  -- 
Figure 11.1.2. The motion 
of a damped spring has I 
the form I 4 I I I 

I I I 
I C 

y = f ( t )=  y o + ~ e - b ' ~ ~ ~ ~ t .  - - - - -  Zn 4n 6 n  8n Ion  r 
W W W W W 

Figure 11.1.3. When 
lim,,, f(x) = I, we can 
catch the graph in the 
shaded region by sliding the 
region sufficiently far to the 
right. This is true no matter 
how small E may be. 

Figure 11.1.4. When it is 
not true that lirn,,, f(x) 
= 1, then for some E, we 
can never catch the graph 
off in the shaded region, 
no matter how far to the 
right we slide the region. 

graph off remains closer and closer to the line y = y o  as we look farther to the 
right. 

The precise definition is analogous to that for limx,,o f (x) .  As is usual in 
our general definitions, we denote the independent variable by x rather th~ .n  t .  

Let f be a function whose domain contains an interval of the form 
(a ,  co). We say that a real number I is the limit of f ( x )  as x approaches co 
if, for every positive number E ,  there is a number A > a such that 
I f ( x )  - 11 < E whenever x > A .  We write lirn,,, f ( x )  = I. 

A similar definition is used for lim,,-, f ( x )  = I. 
When lirn,,, f ( x )  = 1 or lim,,-, f ( x )  = I ,  the line y = I is called a 

horizontal asymptote of the graph y = f (x) .  

We illustrate this definition in Figs. 1 1.1.3 and 1 1.1.4 by shading the region 
consisting of those points ( x ,  y )  for which x < A or for which x > A and 
ly - 11 < E .  If lirn,,, f ( x )  = I ,  we should be able to "catch" the graph off in 
this region by choosing A large enough-that is, by sliding the point A 
sufficiently far to the right. 
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There is an analogous definition for limx,-, f(x) in which we require a 
number A (usually large and negative) such that I f(x) - I1 < E if x < A. 

Example 4 Prove that lim - = 1 by using the &-A definition. 
x-)* 1 + x2 

Solution Given E > 0, we must choose A such that Ix2/(1 + x2) - 11 < e for x > A. We 
have 

To make this less than E, we observe that 1/x2 < e whenever x > I /&, so we 
may choose A = 1 /& . (See Fig. 1 1.1.5.) 8. 

At the beginning of Section 6.4. we stated several limit properties for ex and 
lnx. Some simple cases can be verified by the &-A definition; others are best 
handled by l'H6pital's rule, which is introduced in the next section. 

Example 5 Use the &-A definition to show that for k < 0, limx,,ekx = 0. 

Solution First of all, we note that f(x) = ekx is a decreasing positive function. Given 
E > 0, we wish to find A such that x > A implies ekx < e. Taking logarithms of 
the last inequality gives kx < lne, or x > (lne)/k. So we may let A = (lne)/k. 
(If e is small, lne is a large negative number.) A 

The examples above illustrate the &-A method, but limit computations are 
usually done using laws analogous to those for limits as x -+ x,, which are 
stated in the box on the facing page. 

8x + 2 Example 6 Find (a) and (b) lim - 
x-)* 3x - 1 

Solution (a) w e  have 

(b) We cannot simply apply the quotient rule, since the limits of the numera- 
tor and denominator do not exist. Instead we use a trick: if x # 0, we can 
multiply the numerator and denominator by l / x  to obtain 

8x + 2 - + (2/x) -- for x #O.  
3 x - 1  3 - ( l / x )  

By the replacement rule (with A = 0), we have 

8x + 2 lim -------- = lim 8 + ( 2 / x )  - 8 + 0  8 - -=-  
~ - ) a  3 ~ -  1 X-)* 3 - ( ~ / X I  3 - 0  3 ' 

(The values of (8x + 2)/(3x - 1) for x = lo2, lo4, lo6, 10' are 2.682 . . . , 
2.66682 . . . ,2.6666682 . . . ,2.666666682 . . . .) A 
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Example 7 

Solution 

Constant function rule: 

Assuming that lirn,,, f(x) and limx,,g(x) exist, we have these addi- 

Quotient rule: If lim,,,g(x) # 0, then 

Replacement rule: If for some real number A, the functions f(x) and g(x) 
agree for all x > A, then 

Composite function rule: If h is continuous at lim,,, f(x), then 

All these rules remain true if we replace co by - co (and " > A" by 
"< A" in the replacement rule). 

I I 

The method used in Example 6 also shows that 

a,xn + a,-,xn-I + . . . + a,x + a, a, lim - - - 
X-*w bnxn + b , - l ~ n - l  + . . + bIx + bo bn 

as long as b, # 0. 

Find lim,,,(Jx2 + 1 - x). Interpret the result geometrically in terms of right 
triangles. 

Multiplying the numerator and denominator by + x gives 

X 2 
Figure 11.1.6. As the length - - x 2 + 1 - X  = 1 
x goes to co, the difference J ~ + x  J=+x 

- x between the 
lengths of the hypotenuse 
and the long leg goes to 

As x -+ co, the denominator becomes arbitrarily large, so we find that 

zero. l i m x , , ( / x  - x) = 0. For a geometric interpretation, see Fig. 11.1.6. A 
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Example 8 Find the horizontal asymptotes of f(x) = . Sketch. 
J z T  

Solution We find 

lim = lim 1 = 1 
x + *  J x++-  ,/- 

and 
- 

- 
lim = lim Jx2 = lim - 1  

x---- JX~ x+-" JX 
x+-w Jl+l/x' 

(in the second limit we may take x < 0, so x = - p). Hence the horizontal 
asymptotes are the lines y = + 1. See Fig. 1 1.1.7. A 

Figure 11.1.7. The curve 
y = x / d m  has the 
lines y = - 1 and y = 1 as 
horizontal asymptotes. 

Consider the limits limX,,sin(l/x) and limX,,(l/x2). Neither limit exists, but 
the functions sin(l/x) and 1/x2 behave quite differently as x-0. (See Fig. 
11.1.8.) In the first case, for x in the interval (-6,6), the quantity l / x  ranges 

these functions. I I 
over all numbers with absolute value greater than 1/6, and sin(l/x) oscillates 
back and forth infinitely often. The function sin(l/x) takes each value 
between - 1 and 1 infinitely often but remains close to no particular number. 
In the case of 1/x2, the value of the function is again near no particular 
number, but there is a definite "trend" to be seen; as x comes nearer to zero, 
1/x2 becomes a larger positive number; we may say that limX,,(l/x2) = co. 

Here is a precise definition. 

The 23-6 Definition of lim,,, f(x) = co 
Let f be a function defined in an interval about x,, except possibly at x, 
itself. We say that f(x) approaches co as x approaches xo if, given any real 
number B, there is a positive number 6 such that for all x satisfying 
I X  - xol < 6 and x # x,, we have f(x) > B. We write lim,,xo f(x) = co. 

The definition of limx,xo f(x) = - co is similar: replace f(x) > B in 
the B-6 definition by f(x) < B. 
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Remarks 1. In the preceding definition, we usually think of 6 as being small, while B is 
large positive if the limit is co and large negative if the limit is - co. 

2. If limx,xo f(x) is equal to + co, we still may say that 'climx,xo f(x) does not 
exist," since it does not approach any particular number. 

3. One can define the statements lirn,,, f(x) = +- co in an analogous way. 
The following test provides a useful technique for detecting "infinite limits." 

Then limx,xo f(x) = co if: 

The complete proof of the reciprocal test is left to the reader in Exercise 79. 
However, the basic idea is very simple: f(x) is very large if and only if 1 / f(x) 
is very small. 

A similar result is true for limits of the form lirn,,, f(x); namely, if f(x) 
is positive for large x and lim,,,[l/f(x)] = 0, then lirn,,, f(x) = co. 

Example 9 Find the following limits: (a) lirn 1 - x 2  ; (b) lim - 
x+l (x - 112 x+w x3/2 

Solution (a) We note that l/(x - 1)2 is positive fo; all x Z 1. We look at the reciprocal: 
lim,,,(x - = 0; thus, by the reciprocal test, lim,,,[l/(x - I ) ~ ]  = co. 
(b) For x > 1, (1 - x2)/x3l2 is negative. Now we have 

x3/2 
lim - - - lim 1 1 = lirn - 1 

x+w 1 - x2 x+oo x-3/2  - x1/2 x+w x l / 2  1 x2 / - 1  

= lim -!.- lim = o . ( - 1 ) = 0 ,  
x+oo x1/2 x+w 1/x2 - 1 

so lim,,,[(l - x2)/x3l2] = - co, by the reciprocal test. A 
If we look at the function f(x) = l / (x - 1) near x, = 1 we find that 
lim,,,[l/f(x)] = 0, but f(x) has different signs on opposite sides of 1, so 
lim,,,[l/(x - I)] is neither co nor - co. This example suggests the introduc- 
tion of the notion of a "one-sided limit." Here is the definition. 

In the definition of a one-sided limit, only the values of f(x) for x on one side 
of x, are taken into account. Precise definitions of statements like 
limx,xo+ f(x) = co are left to you. We remark that the reciprocal test extends 
to one-sided limits. 
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Example 10 
1 , (b) lim - Find (a) lirn --- 

, + I +  ( I - X )  x-I- ( I - x ) '  

(c) lim + 2)lxl , and (d) lirn 
(x2 + 2)IxI 

x+O+ X x-0- X 

Solution (a) For x > .I, we find that 1/(1 - x) is negative, and we have limx,,(l - x) 
= 0, so lirn,,, + [ l /( l  - x)] = - co. Similarly, lirn ,,,- [I/(] - x)] = + oo, so 
we get + co for (b). 
(c) For x positive, Ixl/x = 1, so (x2 + 2)IxI/x = x2 + 2 for x > 0. Thus the 
limit is O2 + 2 = 2. 
(d) For x < 0, (xl/x = - 1, so 

(.x2 + 211x1 
lim = - lim [ x 2 + 2 ]  = -2. r 

x.30 - X x-0- 

If a one-sided limit of f(x) at x, is equal to oo or - oo, then the grdph off lies 
closer and closer to the line x = x,; we call this line a vertical asymptote of the 
graph.. 

Example 11 Find the vertical asymptotes and sketch the graph of 

Solution Vertical asymptotes occur where lim,,,o,~l/f(x)] = 0; in this case, they 
occur at xo = 1 and x, = 2. We observe that f(x) is negative on (- w, I), 
positive on (1,2), and positive on (2, co). Thus we have lim,,, - f(x) = - co, 
lirn,, + f(x) = 30, limX,,- f(x) = oo, and lim,,,, fcx) = co . The graph off 
is sketched in Fig. 1 1.1.9. A 

Figure 11.1.9. The graph 
y = l/(x - l)(x - 2)2 has 
the lines x = 1 and x = 2 as 
vertical asymptotes. 

We conclude this section with an additional law of limits. In the next sections 
we shall consider various additional techniques and principles for evaluating 
limits. 

Comparison Test 
1. If limx,xof(x) = 0 and I g(x)l < (f(x)( for all x near x, with x # xo, 

then lim,,,o g(x) = 0. 
2. If lirn,,, f(x) = 0 and Ig(x)l < 1 f(x)I for a11 large x,  then 

lirn,,, g(x) = 0. 

Some like to call this the "sandwich principle" since g(x) is sandwiched 
between - I f(x)I and I f(x)I which are squeezing down on zero as x -+ x, (or 
x + co in case 2). 
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Example 12 (a) Establish comparison test 1 using the E-8 definition of limit. 

(b) Show that limX+, 

Solution (a) Given E > 0, there is a 8 > 0 such that I f(x)I < E if I X  - xol < 8, by the 
assumption that limx+xo f(x) = 0. Given that E > 0, this same 8 also gives 
I g(x)l < E if I X  - xOI < 8 since I g(x)l < I f(x)I. Hence g has limit zero as 
x + x, as well. 
(b) Let g(x) = x sin(l/x) and f(x) = x. Then I g(x)l < 1x1 for all x + 0, since 
Isin(l/x)l < 1, so the comparison test applies. Since x approaches 0 as x+O, 
so does g(x), A 

Exercises for Section "s .'I 
Verify the limit statements in Exercises 1-4 using the 
E-8 definition. 

1. ~ i m ~ + , x ~  = a 2  
2. limx,3(x2 - 2x + 4) = 7 
3. limX,,(x3 + 2x2 + 2) = 47 
4. limX,,(x3 + 2x) = 33 
5. Using the fact that limo+o[(tan8)/8] = 1, find 

lime,,exp[(3 tan 8)/8]. 
6. Using the fact that lime+o[(sin8)/8] = I, find 

lime,o~~s[(7r sin 8)/(48)]. 

Find the limits in Exercises 7-12. 
(x2 - 4) 

7. lim(x2 - 2x + 2) 8. lim - 
x+3 x+-2 x 2 + 4  

(x2 - 4) 
9. lirn 

f i - 3  
10. lirn - 

x+2 (x2 - 5x + 6) X-27 x - 27 
(3 + x ) ~  - 9 

11. lim 
X 

12. lim X - 2  
x-+o x+2 x2 - 3x + 2 

Verify the limit statements in Exercises 13-16 using the 
&-A definition. 

I + X ~  13. lim - - 14, lim ---&!L- = 0 
x+m X3 x-+m x2 + 2 

1 15. Jl%(l + e-3x) = 1 16. lim - = 0 
x+m lnx 

Find the limits in Exercises 17-24. 
5 1 1 .  ( - 2  18. l i m ( 5 - - 4 - 5 )  
x2 x+m x2 x3 

10x2 - 2 19. lim - -4x + 3 20. lim - 
X"m 15x2 - 3 x+m x + 2  

21. lim 3x2 + 2x + 22. ?I& 
x2 + ~ b - ~  

x-'m 5x2+  x + 7 6x2 + 2 
x + 2 +  1/x x - 3  - 1/x2 

23. lim 24. lim 
x+m 2x + 3 + 2/x x+m 2x + 5 + 1/x2 

Find the limits in Exercises 29-32 using the reciprocal 
test. 

1 29. lirn - x2 30. lirn - 
~ - + 2  (X - 212 (X - 214 

x2 + 2 31. lim - 
x+m 6 

X ~ + S  32. lim - 
x+m X5/2 

Find the one-sided limits in Exercises 33-40. 

x2 - 4 33. lirn - 
x+2+ (X - 212 

x2 - 4 34. lim - 
x+2- (x - 212 

(x - 1)(x - 2) 
35. lim 

x-0- x(x  + 1)(x + 2) 

x(x + 3) 
36. lirn 

,-+I + (x - 1)(x - 2) 

37. lim 
(x3 - 1)IxI 

x+o+ X 

40. lirn 
x x -  1/2 

Find the vertical and horizontal asymptotes of the 
functions in Exercises 41-44 and sketch their graphs. 

25. Find ~ i r n , + , [ J ~  - x] and interpret your 45. (a) Establish the comparison test 2 using the &-A 

answer geometrically. definition of limit. (b) Use (a) to find 

26. Find l i r n , , , [ d ~  - cx] and interpret your 
lim [:sin(+ I]. answer ,geometrically. X+OO 

27. Find the horizontal asymptotes of the graph of 46. (a) Use the B-8 definition of limit to show that if 
d m  - (x + 1). Sketch. limx,xo f(x) = co and g(x) > f(x) for x close to 

28. Find the horizontal asymptotes of the graph y = x0, x # x0, then limx+xog(x) = co. (b) Use (a) to 
(x + ])/I/=. Sketch. show that lim,,,[(l + cos2x)/(l - x ) ~ ]  = co. 
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Find the limits in Exercises 47-60. 
3 + 4x 47. lim - x3 - 1 48. lirn - 

.+I 4 + 5x x-1 X - 1 
x3-  1 49. lim - 50. lim - 

x - t ~  x2 - 1 x-+2 x 2 + 3 x + 2  

51. lirn x n -  1 x2 + 2x - 52. lim - 
x+-3 x 2 +  x - 6  X+I x - 1 

x2n + l 
53. lim x - 2 

+ 54. lim - 
x-t-l x +  1 x+2 &-,IT 

55. lim 1 ' 56.;&sin(-) 
x-t2 9x - 1 X 

- 1 57. lirn - 77x2 + 4 58. lirn sin - 
,+I+ X -  1 x+m ( 6 x 2 + 9 )  

In 2x 59. lim - 
x+l -  x -  1 

60. lirn ln(x2) 
x+-m 

Find the horizontal and vertical asymptotes of the 
functions in Exercises 6 1-64. 

X (x + 1)(x - 1) 
61. y = - 62. y = 

x 2 -  1 (x - 2)x(x +2)  
ex + 2x lnx - 1 63. y = --- 64. y = ------ 
ex - 2x lnx + 1 

65. Let f(x) and g(x) be polynomials such that 
limx,,[ f(x)/g(x)] = I. Prove that the limit 
limx,-, f(x)/g(x) is equal to I as well. What 
happens if I = w or - w? 

66. How close to 3 does x have to be to ensure that 
l x 3  - 2~ - 21 1 <A? 

67. Let f(x) = 1x1. 
(a) ~ i n d  f tx )  and sketch its graph. 
(b) Find limxjo- f(x) and limXjo+ f (x). 
(c) Does limXjo f (x)  exist? 

68. (a) Give a precise definition of this statement: 
lirn,,, f(x) = - w. (b) Draw figures like Figs. 
11.1.1, 11.1.3, and 11.1.4 to illustrate your defini- 
tion. - 

69. Draw figures like Figs. 11.1.1, 1 1.1.3, and 1 1.1.4 
to illustrate the definition of these statements: 
(a) lim, ,,o+ f(x) = 1; (b) lim, ,,,+ f(x) = w. 
[Hint: The shaded region should include all 
points with x < xo.] 

70. (a) Graph y = f(x), where 

Does limXjo f(x) exist? 
(b) Graph y = g(x), where 

Does lim,,,g(x) exist? 
(c) Let f(x) be as in part (a) and g(x) as in part 

(b ) .  G r a p h  y = f ( x )  + g ( x ) .  Does  
limxj0[ f(x) + g(x)] exist? Conclude that the 
limit of a sum can exist even though the 
limits of the summands do not. 

71. The number N(t) of individuals in a population 
at time t is given by 

Find the value of lim,,,N(t) and discuss its 
biological meaning. 

72. The current in a certain RLC circuit is given by 
I(t) = {[(1/3)sin t + cos t ~ e - ' / ~  + 4) amperes. 
The value of lim,,,I(t) is called the steadyTstate 
current; it respresents the current present after a 
long period of time. Find it. 

73. The temperature T(x, t) at time t at position x 
of a rod located along 0 < x < I on the x axis 
is given by the rule T(x, t) = Ble-pl'sin A,x 
+ B,e-p2'sin A,x + B3eep3' sin A3x, where p,, 
p2, p3, A,, A,, A, are all positive. Show that 
lirn,,, T(x, t) = 0 for each fixed location x 
along the rod. The model applies to a rod with- 
out heat sources, with the heat allowed to radi- 
ate from the right end of the rod; zero limit 
means all heat eventually radiates out the right 
end. 

74. A psychologist doing some manipulations with 
testing theory wishes to replace the reliability 
factor 

nr R =  (Spearman- Brown formula) 
1 + (n - 1)r 

by unity, because someone told her that she 
could do this for large extension factors n. She 
formally replaces n by l /x ,  simplifies, and then 
sets x = 0, to obtain 1. What has she done, in the 
language of limits? 

*75. Study this 8-6 proof of the sum rule: Let 
limXjxo f(x) = L and limxjxog(x) = M. Given 
E > 0, choose 8, > 0 such that Ix - xol < 6, and 
x #= xo implies I f(x) - LI < ~ / 2 ;  choose 6, > 0 
such that / x  - x,l < 6,, x # xo, implies that 
Ig(x)- MI < ~ / 2 .  Let 6 be the smaller of 6, 
and 6,. Then Ix - xol < 6, and x # x0 implies 
I(f(x) + g(x) )  - ( L  + M)I < I f (x)  - LI + 
I g(x) - MI (by the triangle inequality Ix + yI < 
1x1 + 1 yl). This is less than e/2 + ~ / 2  = E, and 
therefore limx,xo[f(x) + g(x)] = L + M. 

Now prove that limxjxo[af(x) + bg(x)] = 

a lim,-+,,f(x) + b limx,xog(x). 
*76. Study this E-6 proof of the product rule: If 

limx,,o f (x) = L and limx,xo g(x) = M, then 
lim, jxof(x)g(x) = LM. 

Proof: Let E > 0 be given. We must find a 
number 6 > 0 such that I f(x)g(x) - LMI < E 

whenever Ix - xol < 6, x # xO. Adding and sub- 
tracting f(x)M, we have 

The closeness of g(x) to M and f(x) to L must 
depend upod the size of f(x) and IMI. Choose 
6, such that I f(x) - LI < 
I X  - xol < 6,. x =+ xo. Also, ch 
I X  - xol < 6,, x + xo, implie 
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< 1, which in turn implies that I f(x)I < I LI + 1 
(since I f(x)I = I f ( x )  - L + LI < I f ( x )  - LI + 
I LI < 1 + I LI). Finally, choose 6,  > 0 such that 
I g ( x )  - MI < &/[2(ILI + l)] whenever Ix - xol 
< S 3 ,  x # X O .  Let E be the smallest of 6 , ,  6, ,  and 
6, .  If Ix - xol < 6 ,  x # xo, then Ix - xol < S l ,  
I X  - xol < 8 2 ,  and Ix - xol < S 3 ,  SO by the 
choice of 6 , ,  S , ,  S3, we have 

and so I f ( x ) g ( x )  - LMI < E .  

Now prove the quotient rule for limits. 
*77. Study the following proof of the one-sided com- 

posite function rule: If lim,,,,,+ f ( x )  = L and g 
is continuous at L,  then g ( f ( x ) )  is defined for all 
x in some interval of the form ( x o , b ) ,  and 
lim, ,,,+ g ( f ( x ) )  = g ( L ) .  

Proof: Let E > 0. We must find a positive 

number 6 such that whenever xo < x < x,  + 6 ,  
g ( f ( x ) )  is defined and I g ( f ( x ) )  - g(L)I < E .  

Since g is continuous at L,  there is a positive 
number p such that whenever 1 y - LI < p, g ( y )  
is defined and I g ( y )  - g ( L ) (  < E .  Now since 
lim,,xo+ f ( x )  = L, we can find a positive num- 
ber 6 such that whenever x ,  < x < x ,  + 6 ,  
I f ( x )  - LI < p. For such x ,  we apply the previ- 
ously obtained property of p, with y = f (x ) ,  to 
conclude that g ( f ( x ) )  is defined and that 
I g ( f ( x ) )  - g(L)I < E .  

Now prove the composite function rule. 
*78. Use the E-A definition to prove the sum rule for 

limits at infinity. 
*79. Use the B-6 definition to prove the reciprocal 

test for infinite limits. 
*80. Suppose that a function f is defined on an open 

interval I containing x,, and that there are num- 
bers m and K such that we have the inequality 
I f ( x )  - f (xo)  - m ( x  - xo)l < K I X  - x0I2 for all 
x in I. Prove that f is differentiable at xo with 
derivative f'(xo) = m.  

*81. Show that lim,,, f ( x )  = 1 if and only if 
limyjo+ f ( l  / y )  = I .  (This reduces the computa- 
tion of limits at infinity to one-sided limits at 
zero.) 

LyH6pital's Rule 
Differentiation can b e  used t o  evaluate limits. 

L'HGpital's rule2 is a very efficient way of using differential calculus to 
evaluate limits. It is not necessary to have mastered the theoretical portions of 
the previous sections to use YHGpital's rule, but you should review some of the 
computational aspects of limits from either Section 1 1.1 or Section 1.3. 

L'HGpital's rule deals with limits of the form lim,,,. f ( x ) / g ( x ) ] ,  where 
lim,,,o f ( x )  and lim,,,og(x) are both equal to zero or infinity, so that the 
quotient rule cannot be applied. Such limits are called indeterminate forms. 
(One can also replace x ,  by CQ, x ,  + , or x ,  - .) 

Our first objective is to calculate lirn,,,o[ f ( x ) / g ( x ) ]  if f ( x , )  = 0 and 
g(x , )  = 0. Substituting x = x ,  gives us 8, so we say that we are dealing with 
an indeterminate form of type 8. Such forms occurred when we considered the 
derivative as a limit of difference quotients; in Section 1.3 we used the limit 
rules to evaluate some simple derivatives. Now we can work the other way 
around, using our ability to calculate derivatives in order to evaluate quite 
complicated limits: l'H6pitaYs rule provides the means for doing this. 

The following box gives the simplest version of YHGpital's rule. 

In 1696, Guillaume F. A. l'H6pital published in Paris the first calculus textbook: Analyse des 
Infiniment Petits (Analysis of the infinitely small). Included was a proof of what is now referred to 
as SHSpital's rule; the idea, however, probably came from J. Bernoulli. This rule was the subject 
of some work by A. Cauchy, who clarified its proof in his Cours d'Analyse (Course in analysis) in 
1823. The foundations were in debate until almost 1900. See, for instance, the very readable 
article, "The Law of the Mean and the Limits $, z," by W. F. Osgood, Annals of Mathematics, 
Volume 12 (1898-1899), pp. 65-78. 
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L'HGpital's Rule: Preliminary Version 

I Let f and g be differentiable in an open interval containing x,; assume 
that f(x,) = g(x,) = 0. If g'(x,) # 0, then 

f (x )  - f'(x0) lim - - - . 
X+Xo g(x) gf(xo) 

To prove this, we use the fact that f(x,) = 0 and g(x,) = 0 to write 

As x tends to x,, the numerator tends to f'(x,), and the denominator tends to 
gf(xo) Z 0, so the result follows from the quotient rule for limits. 

Let us verify this rule on a simple example. 

Example 1 Find lim [ a 1. 
x+l X-1 

Solution Here we take x, = 1, f(x) = x3 - 1, and g(x) = x - 1. Since g'(1) = 1, the 
preliminary version of l'H6pital's rule applies to give 

We know two other ways (from Chapter 1) to calculate this limit. First, we can 
factor the numerator: 

Letting x + 1, we again recover the limit 3. Second, we can recognize the 
function (x3 - l)/(x - 1) as the different quotient [h(x) - h(l)]/(x - 1) for 
h(x) = x3. As x + 1, this different quotient approaches the derivative of h at 
x = 1, namely 3. A 

The next example begins to show the power of l'H6pital's rule in a more 
difficult limit. 

Example 2 Find 1im 'OSX - . 
X+O sinx 

Solution We apply l'Hdpital's rule with f(x) = cosx - 1 and g(x) = sinx. We have 
f(0) = 0, g(0) = 0, and gf(0) = 1 # 0, so 

f'(0) -sin(O) - lim COSX - 1 = - - - = 0. g 
X+O sinx gf(0) cos(0) 

This method does not solve all 8 problems. For example, suppose we wish to 
find 

lim sinx - x 
x+o x3 

If we differentiate the numerator and denominator, we get (cosx - 1)/3x2, 
which becomes g when we set x = 0. T h ~ s  suggests that we use I'H6pital's rule 
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again, but to do so, we need to know that lim,,,, [f(x)/g(x)] is equal to 
limx+xo[f'(x)/gf(x)], even when f'(xo)/gf(xo) is again indeterminate. The 
following strengthened version of l'H6pital's rule is the result we need. Its 
proof is given later in the section. 

Let f and g be differentiable on an open interval containing x,, except 
perhaps at x, itself. Assume: 

Example 3 Calculate lim 'OSX - . 
x+o x2 

Solution This is in i form, so by l'H6pital's rule, 

lim cos x - 1 = lim - sinx 
x+o x2 x-to 2x 

if the latter limit can be shown to exist. However, we can use l'H6pital's rule 
again to write 

- sinx = - cosx lim - 
x+o 2x x+o 2 

Now we may use the continuity of cos x to substitute x = 0 and find the last 
limit to be - f ; thus 

To keep track of what is going on, some students like to make a table: 

form type limit 

- cosx determinate 

f - 
g 

f' - 
g ' 

Each time the numerator and denominator are differentiated, we must check 
the type of limit; if it is $, we proceed and are sure to stop when the limit 
becomes determinate, that is, when it can be evaluated by substitution of the 
limiting value. 

cosx - 1 0 - indeterminate 
0 

? 
x2 

- sin x - 0 indeterminate 
0 

? 
2x 
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Warning If l'H6pital's rule is used when the limit is determinate, incorrect answers can 
result. For example, limX,,[(x2 + l)/x] = oo but l'H6pital's rule would lead 
to limX,,(2x/l) which is zero (and is incorrect). 

Exarnple 4 Find lirn sinx - . 
X-+O tanx - x 

Solution This is in $ form, so we use l'H6pital's rule: 

form type limit 

sinx - x 
g l tanx - x 

cosx - I 
sec2x - 1 

- sinx 
2 sec x (sec x tan x) 

- COSX determinate 
4 sec2x tan2.-c + 2 sec4x 

~h~~ lim ~ i n x  - x = - - 
X+O tanx - x :.A 

L'HGpital's rule also holds for one-sided limits, limits as x + co, or if we have 
indeterminates of the form g. To prove the rule for the form $ in case 
x + m ,  weusea trick: s e t t =  l /x ,  s o t h a t x =  l / t  a n d t - + O +  asx++co .  
Then 

f'(x> f ' ( l / t> lirn - = lim - x++w gf(x) t+o+ gf(l / t )  

- t"f'l/t) 
= lirn 

"0' - t2g'(l/t) 

= lirn (d/dt)f ( l / t )  
(by the chain rule) 

t+o+ (d/dt)g(l/t) 

f ( l / t )  
= lirn - 

t+o+ g ( l / t )  

f (XI = lirn - 
x++m g(x> ' 

(by l'Hbpital's rule) 

It is tempting to use a similar trick for the g form as x + x,, but it does 
not work. If we write 

which is in the $ form, we get 

f(.) - ,im lirn - - -gf(x>/E g(x)12 
"+" g(x) -f'(x)/[f(x)I2 

which is no easier to handle. For the correct proof, see Exercise 42. 
The use of l'H6pital's rule is summarized in the following display. 
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and take the limit of the new fraction; repeat the process as many times 
as necessary, checking each time that l'H6pital's rule applies. 

If limx,xo f(x) = limx+xo g(x) = 0 (or each is + co), then 

(x, may be replaced by + co or xo +- ). 

The result of the next example was stated at the beginning of Section 6.4. The 
solution by l'H6pital's rule is much easier than the one given in Review 
Exercise 90 of Chapter 6. 

Example 5 Find lim h, where p > 0. 
x+m XP 

Solution This is in the form g. Differentiating the numerator and denominator, we 
find 

since p > 0. A 

Certain expressions which do not appear to be in the form f(x)/g(x) can be 
put in that form with some manipulation. For example, the indeterminate 
form co . 0 appears when we wish to evaluate limx,xo f(x)g(x) where 
limx,xo f(x) = co and limx,xog(x) = 0. This can be converted to 8 or g form 
by writing 

Example 6 Find limxjo+ x ln x. 

Solution We write x lnx as (lnx)/(l/x), which is now in g form. Thus 

- lim (- x) = O. A lim x lnx=  lim -!!E = lim - - 
x+o+ x+o+ 1/x x+o+ - 1/x2 x+o+ 

Indeterminate forms of the type 0' and 1" can be handled by using loga- 
rithms: 

Example 7 Find (a) limxjo+ x x  and (b) lim,,,x'/(' -") 

Solution (a) This is of the form 0°, which is indeterminate because zero to any power is 
zero, while any number to the zeroth power is 1. To obtain a form to which 
l'H6pital's rule is applicable, we write x x  as exp(x ln x). By Example 6, we 
have lirn,,, + x ln x = 0. Since g(x) = exp(x) is continuous, the composite 
function rule applies, giving lim,,, + exp(x ln x) = e ~ p ( l i r n ~ , ~  + x ln x) = e0 
= 1, so lim,,,, xx = 1. (Numerically, O.lO.' = 0.79, O.OO1°.OO1 = 0.993, and 
O.OOOO1°~OOOO1 = 0.99988.) 
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1 1 co-co ? 
xsinx X2 

(b) This has the indeterminate form 1 ". We have xi/("- ') = e('" ")/("-I); 
applying l'H6pital's rule gives 

limx'/(x-l) = lim e ( l n ~ ) / ( ~ -  1) = elim.T-t[(lnx)/(x- ' ) I  = e l  = e. 
x+ 1 x-+ 1 

If we set x =  1 +(l /n) ,  then x + 1  when n+co; we have l / (x -  I ) =  n, so 
the limit we just calculated is lim,,,(l + I/n)". Thus l'H6pital's rule gives 
another proof of the limit formula lim,,,(l + l/n)" = e. A 

The next example is a limit of the form co - co. 

Example 8 Find 

Solbtron We can convert this limit to $ form by bringing the expression to a common 
denominator: 

form type limit 

x - sinx 
x 2sin x 

I - cosx 
2x sinx + x2cosx 

sin x - 0 
0 

? 
2sinx + 4xcosx - x2sinx 

cos x determinate 
6 cos x - 6x sin x - x2cos x 

1 ~ h u s  X+O l i m ( - - - l ) = l . A  x sinx x2 6 

Finally, we shall prove l'H6pital's rule. The proof relies on a generalization of 
the mean value theorem. 

Gauchy's mean Suppose that f and g are continuous on [a, b] and differentiable on (a, b) and that 
value theorem g(a) # g(b in (a, b) such that 

f(b) - f(a) 
= f '@). g'(c) 

g(b) - g(a) 

Proof First note that if g(x) = x, we recover the mean value theorem in its usual 
form. The proof of the mean value theorem in Section 3.6 used the function 

l(x) = f(a) + (x - a) f (b) - f (a) 
b - a .  

For the Cauchy mean value theorem, we replace x - a by g(x) - g(a) and 
look at 
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Notice that f(a) = h(a) and f(b) = h(b). By the horserace theorem (see 
Section 3.6), there is a point c such that f'(c) = hf(c); that is, 

which is what we wanted to prove. H 
We now prove the final version of l'H6pital's rule. Since f(xo) = g(xo) 

= 0, we have 

where cx (which depends on x)  lies between x and x,. Note that cx -+ xo as 
x -+ x,. Since, by hypothesis, limx,xn[ f'(x)/gf(x)] = I, it follows that we also 
have limX,,D[ f'(cx)/gf(cx)] = I, andVso by equation (I),  limx+xo[ f(x)/g(x)] 
= 1. II 

Exercises for Section "1 
Use the preliminary version of l'H6pital's rule to evalu- 
ate the limits in Exercises 1-4. 

X 25. lim - 
x-m x2 + 1 

3x2 - 12 x4 - 8' 2. lim - 1. lirn - 
x+3 x - 3 x+2 x - 2 

x 2 + 2 X  4. lim x 3 + 3 x - 4  
3. lim - 

x + ~  sinx X - ~ I  sin(x - 1) 27. lim 28. lim 
\I7'YE 

x+5+ x - 5  x+5+ x + 5 

Use the final version of l'H6pital's rule to evaluate the 
limits in Exercises 5-8. 

5. lim COS 3x - 1 6. lim COS lox - 1 
x+O 5x2 x+O 8x2 

7. lim sin 2x - 2x 8. lirn sin 3x - 3x 
x-0 x3 x-0 x3 

29. lim x 2 + 2 x + 1  30. l i m x ~ / ( ~ - ~ 2 )  
X I  x 2 - 1  x+l - 

cosx - 1 + x2/2 
31. lim 

x-0 x4 
In x 32. lim - 

X+I ex  - 1 
Evaluate the 8 forms in Exercises 9-12. 1 + cosx 33. lirn - 

X + T  x -  v 
e 9. lirn - 

x-00 x375 
10. lim x4+1nx  

X-'OO 3x4 + 2x2 + 1 34. lim (x - E)tanx 
x-?r/2 2 

sinx - x + (1/6)x3 
35. lim 

x+o x 

In x e i / ~  11. lim - 12. lim - 
x+o+x -2 x+O+ 1/x 

36. lirn x3 + l n x  + 5 
X+m 5x3 + ePX + sinx 

Evaluate the 0 . oo forms in Exercises 13-16. 

13. lirn [x41n x] 14. lirn [tan ln XI 
x-0 x-tl 2 

15. lim [ ~ " e - ~ ~ ]  16. liliT[(x2 - 2vx + v2)csc2x] 
x-to 

37. Find lim,+o+ xplnx, wherep is positive. 

38. Use l'H6pital's rule to show that as x-+oo, 
x n / e x  + 0 for any integer n; that is, ex goes to Evaluate the limits in Exercises 17-36. 
infinity faster than any power of x. (This was 
proved by another method in Section 6.4.) 17. lim [(tanxr] 18. lim [(1 + 

x-to x+m +39. Give a geometric interpretation of the Cauchy 
mean value theorem. [Hint: Consider the curve 
given in parametric form by y = f(t), x = g(t).] 

+40. Suppose that f is continuous at x = x,, thatf'(x) 
19. lim (csc x - cot x) 20. Jimw [In x - In(x - I)] 

x-0 

exists for x in an interval about xo, x + xo, and 
that lirn,,,,, f'(x) = m. Prove that f'(x,) exists 
and equals m. [Hint>.Use the mean value theo- 

1 - x 2  24. lim x + sin2x 23. lirn - 
x-tl 1 + x2 X+O 2x + sin 3x 

rem.] 
+41. Graph the function f(x) = xx, x > 0. 
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*42. Prove l'H6pital's rule for x, = co as follows: to conclude that 
(i) Let f and g be differentiable on (a, co) with 

g(x) # 0 and gl(x) # 0 for all x > a. Use If0 - 11 < E.  
Cauchy's mean value theorem to prove that for g(x) 
every E > 0, there is an M > a such that for 
y > x > M ,  (iii) Complete the proof using (ii). 

(ii) Write 

f (x>'- 
- - lim f ( 4  - f (Y)  

g(x) ,-+a Ax) - g(y) 

and choosey sufficiently large, 

(c) Are your results consistent with the compu- 
tations of Exercise 30, Section 9.4? 

The area of an unbounded region is defned by a limiting process. 

The definite integral J?(x)dx of a function f which is non-negative on the 
interval [a, b] equals the area of the region under the graph off between a and 
b. If we let b go to infinity, the region becomes unbounded, as in Fig. 1 1.3.1. 
One's first inclination upon seeing such unbounded regions may be to assert 
that their areas are infinite; however, examples suggest otherwise. 

Figure 113.1. The region 
under the graph off on 
[a, oo) is unbounded. 

Example 1 Find Jb 4 dx. What happens as b goes to infinity? 
1 X 

Solution We have 

As b becomes larger and larger, this integral always remains less than 4 ;  
furthermore, we have 

lim Jb = lim 
I - i / b 3  

=-.A 
b+oo 1 X4 b+oo 3 3 

Example 1 suggests that f is the area of the unbounded region consisting of 
I those points (x, y)  such that 1 9 x and 0 < y < 1/x4. (See Fig. 1 1.3.2.) In 

Figure 113.2. The region accordance with our notation for finite intervals, we denote this area by 
under thegraphof 1/x40n lr(dx/x4). Guided by this example, we define integrals over unbounded 

Cf~)has finite area. It is intervals as limits of integrals over finite intervals. The general definition 
JT(dx/x4) = ). follows. 
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limb,,J~(x)dx exists, we say that the improper integral J,"f(x)dx is 
convergent, and we define its value by 

Similarly, if, for fixed b, f is integrable on [a, b] for all a < b, we 

if the limit exists. 
Finally, iff is integrable on [a, b] for all a < b, we define 

Example 2 For which values of the exponent r is x r  dx convergent? 1" 
Solution We have 

X r + ~  b br+' - 1 
lim I b x  dx = lim - 1 = lim 

b+00 r + 1 b-f, r + l ( r  + - 1). 
b+m 1 

If r + 1 > 0 (that is, r > - I), the limit limb,,br+l does not exist and the 
integral is divergent. If r + 1 < 0 (that is, r < - I), we have limb,,br+ ' = 0 
and the integral is convergent-its value is - l / (r  + 1). Finally, if r = - 1 we 
have Jix-'dx = lnb, which does not converge as b + oo. We conclude that 
J;*x ' dx is convergent just for r < - 1. A 

Example 3 Find 

Solution We write J> (dx/(l + x2)) = Jy, (dx/(l + x2)) + J: (dx/(l + x2)). To 
evaluate these integrals, we use the formula J(dx/(l + x2)) = tanP'x. Then 

I-' --,&L. = lim (tan-'O - tan-'a) 
m 1 + x 2  

(See Fig. 5.4.5 for the horizontal asymptotes of y = tan-'x.) Similarly, we 
have 

dx - lim (tan-'b - tan-'0) = I( 
2 '  

Sometimes we wish to know that an improper integral converges, even though 
we cannot find its value explicitly. The following test is quite effective for this 
situation. 
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Suppose that f and g are functions such that 

Similar statements hold for integrals of the type 

Here we shall explain the idea behind the comparison test. A detailed proof is 
given at the end of this section. 

If f(x) and g(x) are both positive functions (Fig. 11.3.3(a)), then the 
region under the graph off is contained in the region under the graph of g, so 

'I x = a  'I x = a  

Figure 11.3.3. Illustrating 
the comparison test. I (a) 

the integral J?(x)dx increases and remains bounded as b -+ MI. We expect, 
therefore, that it should converge to some limit. In the general case (Fig. 
11.3.3(b)), the sums of the plus areas and the minus areas are both bounded 
by J,"g(x) dx, and the cancellations can only help the integral to converge. 

Note that in the event of convergence, the comparison test only gives the 
inequality - (,"g(x) dx < (,"f(x) dx < (,"g(x) dx, but it does not give us the 
value of J,"f(x) dx. 

Example 4 Show thai L* dX is convergent, by comparison with l/x4. 
J3 

Solution We have 1 / J X 8  < 1/@ = 1/x4, so it is tempting to compare with 
J,"(dx/x4). Unfortunately, the latter integral is not defined because l /x4  is 
unbounded near zero. However, we can break the original integral in two 
parts: 

dx 1 dx * dx 

The first integral on the nght-hand side exists because 1 / J K 8  is continu- 
ous on [0, 11. The second integral is convergent by the comparison test, taking 
g(x) = 1 /x4 and f(x) = l / J m .  Thus J," ( d x / J m )  is convergent. A 
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Example 5 Show that 6- sinx dx converges (without attempting to evaluate). 
(1 + x ) ~  

Solution We may apply the comparison test by choosing g(x) = 1/(1 + x ) ~  and f(x) = 
(sinx)/(l + x ) ~ ,  since lsinxl < 1. To show that J,"(dx/(l + x ) ~ )  is convergent, 
we can compare 1/(1 + x ) ~  with 1/x2 on [l,  co), as in Example 4, or we can 
evaluate the integral explicitly: 

Example 6 Show that iw dx is divergent. 
JG-2 

Solution We use the comparison test in the reverse direction, comparing 1/J=. 
with l /x.  In fact, for x > 1, we have 1 / J s  > I/{= = l/\IZx. 
But J?(dx/\IZx) = (l/\IZ)lnb, and this diverges as b+  co. Therefore, by 
statement (2) in the comparison test, the given integral diverges. A 

We shall now discuss the second type of improper integral. If the graph of a 
function f has a vertical asymptote at one endpoint of the interval [a, b], then 
the integral J?(x)dx is not defined in the usual sense, since the function f is 
not bounded on the interval [a, b]. As with integrals of the form J,"f(x)dx, we 
are dealing with areas of unbounded regions in the plane-this time the 
unboundedness is in the vertical rather than the horizontal direction. Follow- 
ing our earlier procedure, we can define the integrals of unbounded functions 
as limits, which are again called improper integrals. 

Suppose that the graph off has xo = b as a vertical asymptote and that 
for a fixed, f is integrable on [a,q] for all q in [a,b). If the limit 
lim,,,- Jy(x) dx exists, we shall say that the improper integral J ~ ( x ) ~ x  
is convergent, and we define 

Similarly, if x = a is a vertical asymptote, we define 

if the limit exists. (See Fig. 11.3.4.) 

If both x = a and x = b are vertical asymptotes, or if there are vertical 
asymptotes in the interior (a, b), we may break up [a,, b] into subintervals such 
that the integral of f on each subinterval is of the type considered in the 
preceding definition. If each part is convergent, we may add the results to get 
J ~ ( x )  dx. The comparison test may be used to test each for convergence. (See 
Example 9 below.) 
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." t 

Figure 11.3.4. Improper 
integrals defined by 
(a) the limit 
limq,, - Jzf(x) dx and 
(b) the limit 

Example 7 For which values of r is x r  dx convergent? I' 
Solution If r > 0, x r  is continuous on [O,1] and the integral exists in the ordinary sense. 

If r < 0, we have lim,,,, x r  = co, so we must take a limit. We have 

I X r + ~  1 
p i y + i x r d x =  lim - I - lim p r + l  , 

,+o+ r + 1 I,= ;TT ( ,+o+ 1 
provided r # - 1. If r + 1 > 0 (that is, r > - I), we have limp,,+ pr+l = 0, SO 

the integral is convergent and equals l /(r  + I). If r + 1 < 0 (that is, r < - I), 
r + l  = "mp+o+ PI co, so the integral is divergent. Finally, if r + 1 = 0, we have 

limpjot JPx dx = limp,o+ (0 - In p) = co . Thus the integral JAxrdx con- 
verges just for r > - 1. (Compare with Example 2.) A 

Example 8 Find I' In x dx. 

Solution We know that J In x dx = x In x - x + C, so 

I 1 l n x d x =  lim (11n1 - 1 - p l n p + p )  
p+o+ 

= o - 1 - o + o =  -1 

(limp,,+ p ln p = 0 by Example 6, Section 1 1.2). A 

Example 9 Show that the improper integral - dx is convergent. I" :" 
Solution This integral is improper at both ends; we may write it as I, + I,, where 

I, =I1(e- ' /&)dx and I, =I;w(e-x/&)dx 

and then we apply the comparison test to each term. On [O, 11, we have 

e-" < 1, so e-x/& < I/&. Since JA(dx/&) is convergent (Example 7), so 
is I , .  On [ l , ~ ) ,  we have I /& < 1, so e T X / &  < e-"; but J;*ePxdx is 
convergent because 

I;" e-"dx= lim ePxdx= lim (e-'  - e-b) = e-' 
b+m Ib 1 b+m 

Thus I, is also convergent and so J,"(e-"/&)dx is convergent. A 
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Improper integrals arise in arc length problems for graphs with vertical 
tangents. 

Example 10 Find the length of the curve y = Js for x in [ -  1,1]. Interpret your result 
geometrically. 

Solution By formula (I), Section 10.3, the arc length is 

The integral is improper at both ends, since 

lim = lim =m. 
x + l +  J1_- x+l- J3 

We break it up as 

= lim dx 

= lim (sin- '0 - sin- 'p) + lim (sin-Iq - sinP'O) 
p+-I+ q p l -  

= o -  -II. + I - o = . r r .  ( 2 )  2 
Geometrically, the curve whose arc length we have just found is a 

semicircle of radius 1, so we recover the fact that the circumference of a circle 
of radius 1 is 2m. A 

Example 11 Luke Skyrunner has just been knocked out in his spaceship by his archenemy, 
Captain Tralfamadore. The evil captain has set the controls to send the 
spaceship into the sun! His perverted mind insists on a slow death, so he sets 
the controls so that the ship makes a constant angle of 30" with the sun (Fig. 
11.3.5). What path will Luke's ship follow? How long does Luke have to wake 
up if he is 10 million miles from the sun and his ship travels at a constant 
velocity of a million miles per hour? 

Figure 113.5. Luke 
Skyrunner's ill-fated ship. 

Solution We use polar coordinates to describe a curve (r(t),O(t)) such that the radius 
makes a constant angle a with the tangent (a = 30" in the problem). To find 
dr/d9, we observe, from Fig. 11.3.6(a), that 

rA9 so & -  r Arm- 
tan a dB tana ' 
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Figure 113.6. The 
gebmetry of Luke's path. 

We can derive formula (1) rigorously, but also more laboriously, by 
calculating the slope of the tangent line in polar coordinates and setting it 
equal to tan(8 + a) as in Fig. 11.3.6(b). This approach gives 

tane(dr/d0) + r 
= tan(8 + a)  = tan8 + tana 

dr/d0 - rtan8 1 -tanBtana ' 

so that again 

dr - r 
dB tana ' 

The solution of equation (1) is3 

For this solution to be valid, we must regard 0 as a continuous variable 
ranging from - oo to m, not as being between zero and 2m. As 0+ m, 
r(8) + oo and as 0 + - m, r(8) + 0, so the curve spirals outward as 8 
increases and inward as 8 decreases (if 0 < a < 77/2). This answers the first 
question: Luke follows the logarithmic spiral given by equation (2), where 
0 = 0 is chosen as the starting point. 

From Section 10.6, the distance Luke has to travel is the arc length of 
equation (2) from 8 = 0 to 0 = - oo, namely, the improper integral 

0 e/tan a 1 do 
= l wr(o)e sin a 

0 )  - =- 
COS a 

-m 
COS a 

With velocity = lo6, r(0) = lo7, and cos a = cos 30" = 0 /2, the time needed 
to travel the distance is 

Thus Luke has less than 11.547 hours to wake up. A 

See Section 8.2. If you have not read Chapter 8, you may simply check directly that equation (2) 
is a solution of (1). 
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The logarithmic spiral turns up in another interesting situation. Place four love 
bugs at the corners of a square (Fig. 11.3.7). Each bug, being in love, walks 
directly toward the bug in front of it, at constant top bug speed. The result is 
that the bugs all spiral in to the center of the square following logarithmic 
spirals. The time required for the bugs to reach the center can be calculated as 
in Example 1 1 (see Exercise 46). 

We conclude this section with a proof of the comparison test. The proof is 
based on the following principle: 

Let F be a function defined on [a, co) such that 
Figure 11.3.7. These love (i) F is nondecreasing; i.e., F(x,) < F(x2) whenever x,  < x2; 
bugs follow logarithmic (ii) F is bounded above: there is a number M such that F(x) < M for all x. 
spirals. Then lim,,,F(x) exists and is at most M. 

The principle is quite plausible, since the graph of F never descends and 
never crosses the line y = M, so that we expect it to have a horizontal 
asymptote as x -+ co. (See Fig. 11.3.8). 

Figure 11.3.8. The graph of 
a nondecreasing function 
lying below the liney = M 
has a horizontal asymptote. 1 

A rigorous proof of the principle requires a careful study of the real 
numbers," so we shall simply take the principle for granted, just as we did for 
some basic facts in Chapter 3. A similar principle holds for nonincreasing 
functions which are bounded below. 

Now we are ready to prove statement (1) in the comparison test as stated 
in the box on p. 530. (Statement (2) follows from (I), for if J,"g(x)dx 
converged, so would J,"f(x) dx.) 

y t  and 

I 
be the positive and negative parts off, respectively. (See Fig. 11.3.9.) 

Notice that f = f, + f,. Let F,(x) = FJ,(t) dt and F,(x) = YJ2(t) dt. Since 
f, is always non-negative, F,(x) is increasing. Moreover, by the assumptions of 
the comparison test, 

I 
F,(x) <Ixlf( t) l  dl < i x g ( t ) d f < l w  g(t)dt, Figure 11.3.9. f, and f2 are a 

the positive and negative 
parts off. so F, is bounded above by J,"g(t) dt. Thus, F, has a limit as x -+ co. Likewise, 

See the theoretical references listed in the preface. 
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F2 has a limit since F2 is decreasing and bounded below. Since 

it, too, has a limit as x + m. 

Exercises for Section 4 1.3 
Evaluate the improper integrals in Exercises 1-8. 

Show, using the comparison test, that the integrals in 
Exercises 9- 12 are convergent. dt. 

35. J; 3 
9.1"" m sinx dx 

3 + x3 cos(x2 + 1) 
36. J-: x2 

dx. [Hint: Use the comparison 

test on a small interval.] 

Show, using the comparison test, that the integrals in 
Exercises 13- 16 are divergent. 

J;, (2 + sinx) dx 
15. dx 

l + x  

Evaluate the improper integrals in Exercises 17-20. 
41. Consider the spirals defined in polar coordinates 

by the parametric equations 8 = t, r = t-k. For 
which values of k does the spiral have finite arc 
length for s / 2  < t < co? (Use the comparison 
test.) 

42. Does the spiral 8 = t, r = eCJ; have finite arc 
length for s < t < co? 

43. Find the area under the graph of the function 
f(x) = (3x + 5)/(x3 - 1) from x = 2 to x = co. 

44. Find the area between the graphs y = x-4/3 and 
y = X-5/3 on [I, co). 

45. In Example 11, suppose that Luke's airhoses 
melt down when he is lo6 miles form the sun. 
Now how long does he have to wake up? 

46. Let a in Fig. 11.3.7 be 60" (a is defined in 
Example 11). Find the time required for the bugs 
to reach the center in terms of their speed and 
their initial distance from the center. 

47. The region under curvey = e-" is rotated about 
the x axis to form a solid of revolution. Find the 
volume obtained by discarding the portion on 
- co < x < 10 (after slicing the solid at x = 10). 

Using the comparison test, determine the convergence 
of the improper integrals in Exercises 21-24. 

Determine the convergence or divergence of the inte- 
grals in Exercises 25-40. 

25. J-" dx m sinx dx 

1 (2 + x13 
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48. Determine the lateral surface area of the surface for the probability P that a mother's height is not 
of revolution obtained by revolving y = e-" ,  greater than r inches. The estimated values of y 
0 < x < co, about the x axis. and u are y = 62.484 inches, u2 = 5.7140 square 

49. Show that lim,,,+ [ J~$(dx /x )  + J: (dxlx)] ex- inches. 
ists and determine its value. (a) Determine the value of P by appeal to inte- 

50. Discuss the following "calculations": gral tables for 

( 2  cosx dx 
~ / 2  (1 + sin x13 

5 1. You can simulate the logarithmic spiral yourself 
as follows: Stand in an open field containing a 
lone tree and lock your neck muscles so that 
your head is pointed at a fixed angle a to your 
body. Walk forward in such a way that you are 
always looking at the tree. Prove that you will 
walk along a logarithmic spiral. 

52. The probability P that a phonograph needle 
will last in excess of 150 hours is given by 
the formula P = e -'/loo dt. Find the value 
of P. J;: 

53. The probability p that the score on a reading 
comprehension test is no greater than the value a 
is 

a, y are constants. 
(a) Let x = (T - y)/u and x ,  = (a - p)/o. 

Show that 

(b) Show that ~ > e - " ~ / ~ d x  < co. 
*54. Pearson and Lee studied the inheritance of physi- 

cal characteristics in families in 1903. One law 
that resulted from these studies is 

using r = 63 inches. Look in a mathematical 
table under probability functions or normal 
distribution. 

(b) According to the study, how many mothers 
out of 100 are likely to have height not 
exceeding 63 inches? 

*55. (a) Evaluate m du 

(b) For what p and q is 

convergent? 
*56. Consider the surface of revolution obtained by 

revolving the graph of f(x) = l / x  on the interval 
[I, co) about the x axis. 
(a) Show that the area of this surface is infinite. 
(b) Show that the volume of the solid of revolu- 

tion bounded by this surface is finite. 
(c) The results of parts (a) and (b) suggest that 

one could fill the solid with a finite amount 
of paint, but it would take an infinite 
amount of paint to paint the surface. Ex- 
plain this paradox. 

Next consider the surface of revolution obtained 
by revolving the curve y = l / x r  for x in [I, co) 
about the x axis. 
(d) For which values of r does this surface have 

finite area? 
(e) For which values of r does the solid sur- 

rounded by this surface have finite volume? 
Compute the volume for these values of r. 

*57. Show that if 0 < f'(x) < 1/x2 for all x in [0, a), 
then lim,,, f(x) exists. 

11.4 Limits of Sequences 
and Newton's Method 
Solutions of equations can often be found as the limits of sequences. 

This section begins with a discussion of sequences and their limits. The topic 
will be taken up again in Section 12.1 when we study infinite series. A 
sequence is just an "infinite list" of numbers: a,,a2,a,, . . . , with one a, for 
each natural number n. A number I is called the limit of this sequence if, 
roughly speaking, a, comes and remains arbitrarily close to I as n increases. 
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Perhaps the most familiar example of a sequence with a limit is that of an 
infinite decimal expansion. Consider, for instance, the equation 

f = 0.333 . . . ( I,) 
in which the dots on the right-hand side are taken to stand for "infinitely 
many 3's." We can interpret equation (I) without recourse to any metaphysi- 
cal notion of infinity: the finite decimals 0.3'0.33'0.333, and so on are 
approximations to f ,  and we can make the approximation as good as we wish 
by taking enough 3's. Our sequence a,,a,, . . . is defined in this case by 
a, = 0.33 . . . 3, with n 3's (here the three dots stand for only finitely many 
3's). In other words, 

We can estimate the difference between a, and f by using some algebra. 
Multiplying equation (2) by 10 gives 

and subtracting equation (2) from equation (3) gives 

Finally, 

As n is taken larger and larger, the denominator 10" becomes larger and 
larger, and so the difference f -an becomes smaller and smaller. In fact, if n 
is chosen large enough, we can make f -an as small as we please. (See Fig. 
11.4.1.) 

Figure 11.4.1. The decimal 
approximations to f form a 
sequence converging to f . 

Example 1 How large must n be for the error $ -an to be less than 1 part in 1 million? 

Solution By equation (4)' we must have 

or lo-" < 3 lop6. It suffices to have n 2- 6, so the finite decimal 0.333333 
approximates f to within 1 part in a million. So do the longer decimals 
0.3333333, 0.33333333, and so on. A 

There is nothing special about the number in Example 1. Given any 
positive number E, we will always be able to make f - a, = f (1/ 10") less than 
E by letting n be sufficiently large. We express this fact by saying that f is the 
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limit of the numbers 

as n becomes arbitrarily large, or 

We may think of a sequence a,,a,,a,, . . . as a function whose domain 
consists of the natural numbers 1,2,3, . . . (Occasionally, we allow the do- 
main to start at zero or some other integer.) Thus we may represent a 
sequence graphically in two ways-either by plotting the points a,,a,, . . . on 
a number line or by plotting the pairs (n, a,) in the-plane. 

Example 2 (a) Write the first six terms of the sequence a, = n/(n + I), n = 1,2,3, . . . . 
Represent the sequence graphically in two ways. Find the value of 
lim,,,[n/(n + I)]. (b) Repeat for an = (- I)"/n. (c) Repeat for a, = 
(- l>"n/(n + 1). 

Solution (a) We obtain the terms a ,  through a, by substituting n = 1,2,3, . . . , 6 into 
the formula for a, , giving 4, f , f , f ,2 ,  q :  These values are plotted in Fig. 11.4.2. 
As n gets larger, the fraction n/(n + 1) gets larger and larger but never 
exceeds 1 ; we may guess that the limit is equal to 1. 

To verify this guess, we look at the difference 1 - n/(n + 1). We have 

which does indeed become arbitrarily small as n increases, so 

lim = 1. 
n+oo (n + 1) 

(b) The terms a ,  through a, are - I,+, - f , f ,  - +, i .  They are plotted in Fig. 
11.4.3. As n gets larger, the number (- l)"/n seems to get closer to zero. 
Therefore we guess that limn,,[(- l)"/n] = 0. 

0 - 
1 2 3 4 5 6 7  

Figure 11.4.2. The 
sequence a, = n/(n + 1) 
represented graphically in 
two different ways. 

Figure 11.4.3. The 
sequence a, = ( - I)"/ n 
plotted in two ways. 
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(c) We have, for a ,  through a,, - +,3, - a ,$, - 2 , $ .  They are plotted in Fig. 
11.4.4. In this case, the numbers a, do not approach any particular number. 
(Some of them are approaching 1, others - I.) We guess that the sequence 
does not have a limit. A 

Figure 11.4.4. The e 

sequence a, = (-  l)"n/(n + 1)  - 1  
e 

plotted in two ways. I 
Just as with the e-8 definition for limits of functions, there is an e-h 

definition for limits of sequences which makes the preceding ideas precise. 

The sequence a,,a,, a,, . . . , a,, . . . approaches I as a limit if a, gets 
close to and remains arbitrarily close to I as n becomes large. In this 

In precise terms, lim,,,a, = I if, for every e > 0, there is an N such 
that la, - I (  < e for all n > N. 

1 - E  I I +  E 
It is useful to think of the number E in this definition as a tolerance, or 

p------------~ " , ex -iwj*i - r --> allowable error. The definition specifies that if I is to be the limit of the 
( ~ - L V - ~ ~ ~ & Z & ~ % Z  *-%"st#} 

an sequence a,, then, given any tolerance, all the terms of the sequence beyond a 
-E-E- certain point should be within that tolerance of I. Of course, as the tolerance is 

Figure 11.4.5. The made smaller, it will usually be necessary to go farther out in the sequence to 
relationship between a,, I, bring the terms within tolerance of the limit. (See Fig. 11.4.5.) 
and E in the definition of The purpose of the E-N definition is to lay a framework for a precise 
the limit of a sequence. discussion of limits of sequences and their properties-just as the definitions 

in Section 11.1. 
Let us check the limit of a simple sequence using the e-N definition. 

Example 3 Prove that lim,,,(l/n) = 0, using the E-N definition. 

Solution To show that the definition is satisfied, we must show that for any E > 0 there 
is a number N such that Il/n - 01 < E if n > N. If we choose N > 1 / ~ ,  we 
get, for n > N, 

Thus the assertion is proved. A 
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Calculator Discussion 

Figure 11.4.6. For a 
recursively defined 
sequence a, + , = f (a,), the 
next member in the 
sequence is obtained by 
depressing the "f" key. 

Here f =r. 

Limits of seauences can sometimes be visualized on a calculator. Consider the 
sequence obtained by taking successive square roots of a given positive 
number a:  

a, = a, . ,=c,  .,=,IF, a 3 = J F 7  

and so forth. (See Fig. 11.4.6.) 

For instance, if we start by entering a = 5.2, we get 

a, = 5.2, 

and so on. After pressing the $ repeatedly you will see the numbers getting 
closer and closer to 1 until roundoff error causes the number 1 to appear and 
then stay forever. This sequence has 1 as a limit. (Of course, the calculation 
does not prove this fact, but does suggest it.) Observe that the sequence is 
defined recursively-that is, each member of the sequence is obtained from the 
previous one by some specific process. The sequence 1,2,4,8,16,32, . . . is 
another example; each term is twice the previous one: a,, , = 2a,. A 

Limits of sequences are closely related to limits of functions. For exam- 
ple, if f(x) is defined for x > 0, then a, = f(n) is a sequence. If lim,,, f(x) 
exists, then lim,,,a, exists as well and these limits are equal. This fact can 
sometimes be used to evaluate some limits. For instance, 

lim = lim 1 = 1 - I -1, 
X + W  x + 1 X+W 1 + l / x  1 + lim 1 + 0 

X+ w 

and so limn,,[n/(n + l)] = 1, confirming our calculations in Example 2(a). 
Limits of sequences also obey rules similar to those for  function^.^ We 

illustrate: 

n 2 +  I Example 4 Find (a) lirn ( ---- ) 
n+c/3 3n2+ n 

3 and (b) lim 1 - - + - 
n+w ( n n + l  

Solution (a) Write 

1 + l /n2  
lim ( ~ ) = lim ( ) (dividing numerator and denominator by n2) 

n + W  3n2+ n n-m 3 l /n  

These are written out formally in Section 12.1. 
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1 + lirn (l/n2) 
- - n+w (quotient and sum rules) 

3 + lirn ( l /n)  
n+ w 

3 1 (b) )~irn(l-~+~ ) = 1 - 3  ( )  lim - + n + m ( l + l / n )  lim - 

= 1 - 3 . 0 + 1 = 2 . A  

The connection with limits of functions allows us to use I'H6pital's rule to 
find limits of sequences. 

B Example 5 (a) Using numerical calculations, guess the value of limn,, "Jt;. (b) Use 
l'H6pital's rule to verify the result in (a). 

Solution (a) Using a calculator we find: 

Thus it appears that limn,, = 1. 
(b) To verify this, we use l'H6pital's rule to show that ~irn~,,x'/~ = 1. The 
limit is in ooO form, so we use logarithms: 

.I/x = ,(lnx)/x. 

Now limx,,(lnx/x) is in 8 form, and l'H6pital's rule gives 

In x lim - = lim I/X = 0. 
x+w x x+w 1 

Hence 

confirming our numerical calculations. A 

When we introduced limits of sequences in Example 1, we implicitly used 
the fact that lim,,,,(l/lOn) = 0. The following general fact is useful. 
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To see this, first consider the case r > 1. We write r as 1 + s where s > 0. If we 
expand r n  = (1 + s)", we get r n  = 1 + ns + (other positive terms.) Therefore, 
rn  > 1 + ns, which goes to co as n + co. Second, if r = 1, then r n  = 1 for all n, 
so lim,,,rn = 1. Finally, if 0 < r < 1, then excluding the easy case r = 0, 
we let p = l / r  so p > 1, and so lim,,,pn = co. Therefore, lim,,,rn = 
lim,,,(l/pn) = 0 (compare the reciprocal test for limits of functions in 
Section 1 1.1). 

Example 6 Evaluate (a) lim,,,3", (b) lim,,,e -", (c) lim,,,(e + 
Solution (a) Here r = 3 > 1, so lim,,,3" = co. 

(b) e-" = (lie)", and l / e  < 1, so lim,,,e-" = 0. 
(c) lim,,,[e + ($)"14 = [e + limn,,($)"]4 = [e + 014 = e4. A 

Another useful test is the comparison test: it says that if lim,,,,a,, = 0 
and if lbnl < la,l, then lim,,,,b, = 0 as well. This is plausible since b, is 
squeezed between -la,,/ and Jan/  which are tending to zero. We ask the reader 
to supply the proof in Exercise 56. 

If lim,,,a, = 0 and lbnl < lanl then lim,,,b, = 0. 

(-  1)" + n 
Example 7 Find (a) lim Si"n and (b) lim 

n+w n n + w  n 

Solution (a) If a, = l /n  and b, = (sinn)/n, then a,+O and Ib,J < la,l, so by the 
comparison test, lim,,,(sin n)/n = 0. 
(b) I(- l)"/nl < l /n  + 0, so (- l)"/n + 0 by the comparison test. Thus 

Many questions in mathematics and its applications lead to the problem 
of solving an equation of the form 

f (x) = 0, (5) 

where f is some function. The solutions of equation (5) are called the roots or 
zeros off. Iff is a polynomial of degree at most 4, one can find the roots off 
by substituting the coefficients of f into a general formula (see pp. 17 and 
173). On the other hand, if f is a polynomial of degree 5 or greater, or a 
function involving the trigonometric or exponential functions, there may be no 
explicit formula for the roots off, and one may have to search for the solution 
numerically. 

Newton's method uses linear approximations to produce a sequence 
x,, x, , x,, . . . which converges to a solution of f(x) = 0. Let x, be a first 
guess. We seek to correct this guess by an amount Ax so that f(x, + Ax) = 0. 
Solving this equation for Ax is no easier than solving the original equation (5 ) ,  
so we manufacture an easier problem, replacing f by its first-order approxima- 
tion at x,; that is, we replace f(xo + Ax) by f(x,) + f'(xo)Ax. If f(x,) is not 
equal to zero, we can solve the equation f(x,) +f'(x,)Ax = 0 to obtain 
Ax = - f(xo)/f'(xo), so that our new guess is 

x ,  = xo + Ax = Xo - f (xo)/ f'(xo). 
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Geometrically, we have found x ,  by following the tangent line to the graph of 
f a t  (x,, f(x,)) until it meets the x axis; the point where it meets is (x,, 0) (see 
Fig. 1 1.4.7). 

Figure 11.4.7. The 
geometry of Newton's 
method. 

Now we find a new guess x2 by repeating the procedure with x ,  in place 
of x,; that is, 

In general, once we have found x,, we define x,, , by 

Let us see how the method works in a case where we know the answer in 
advance. (This iteration procedure is particularly easy to use on a programma- 
ble calculator.) 

fl Example 8 Use Newton's method to find the first few approximations to a solution of the 
equation x2 = 4, taking x, = 1. 

Solution To put the equation x2 = 4 in the form f(x) = 0, we let f(x) = x2 - 4. Then 
f'(x) = 2x, so the iteration rule (6) becomes x,, , = x, - (x: - 4)/2x,, 
which may be simplified to x,, , = $(x, + 4/xn). Applying this formula re- 
peatedly, with x, = 1, we get (to the limits of our calculator's accuracy) 

x,  = 2.5 

x2 = 2.05 

x, = 2.000609756 

x, = 2.000000093 

x, = 2 

x, = 2 

and so on forever. The number 2 is, of course, precisely the positive root of 
our equation x2 = 4. A 

Example 9 Use Newton's method to locate a root of x5 - x4 - x + 2 = 0. Compare what 
happens with various starting values of x, and attempt to explain the phenom- 
enon. 
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Solution The iteration formula is 

Figure 11.4.8. Newton's 
method does not always 
work. 

For the purpose of convenient calculation, we may write this as 

Starting at xo = 1, we find that the denominator is undefined, so we can go no 
further. (Can you interpret this difficulty geometrically?) 

Starting at x, = 2, we get 

x, = 1.659574468, 

x, = 1.372968569, 

x, = 1.068606737, 

X, = - 0.5293374382, 

x5 = 169.5250382. 

The iteration process seems to have sent us out on a wild goose chase. To see 
what has gone wrong, we look at the graph of f(x) = x5 - x4 - x + 2. (See 
Fig. 11.4.8.) There is a "bowl" near x, = 2; Newton's method attempts to take 
us down to a nonexistent root. (Only after many iterations does one converge 
to the root-see Exercise 59 and Example 10.) 

Finally, we start with x, = - 2. The iteration gives 

x0=  -2, f(x0) = -44; 

x,=-1.603603604, f(x,)=-13.61361361; 

x, = - 1.323252501, f(x,) = - 3.799819057; 

x, = - 1.162229582, f (x,) = - 0.782974790; 

x4 = - 1.107866357, f(x4) = - 0.067490713; 
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Since the numbers in the f(x) column appear to be converging to zero 
and those in the x column are converging, we obtain a root to be (approx- 
imately) - 1.10217208. Since f(x) is negative at this value (where f(x) = 
- 0.000000003) and positive at - 1.10217207 (where f(x) = 0.0000001 15), we 
can conclude, by the intermediate value theorem, that the root is between 
these two values. g 

Example 9 illustrates several important features of Newton's method. 
First of all, it is important to start with an initial guess which is reasonably 
close to a root-graphing is a help in making such a guess. Second, we notice 
that once we get near a root, then convergence becomes very rapid-in fact, 
the number of correct decimal places is approximately doubled with each 
iteration. Finally, we notice that the process for passing from x, to x,, , is the 
same for each value of n;  this feature makes Newton's method particularly 
attractive for use with a programmable calculator or a computer. Human 
intelligence still comes into play in the choice of the first guess, however. 

To find a root of the equahon f(x) = 0, where f is a differentiable 
function such that f' is continuous, start with a guess x, which is 
reasonably close to a root. Then produce the sequence x,, x , ,  x,, . . . by 
the iterative formula: 

To justify the last statement in the box above, we suppose that limn,,xn = X. 
Taking limits on both sides of the equation x,+, = xn - f(xn)/f'(xn), we 
obtain X = X - limn,,[ f(xn)/f'(xn)], or limn,,[ f(xn)/f'(xn)] = 0. Now let 
an = f(xn)/f'(xn). Then we have lim,,,an = 0, while f(xn) = aJ"(xn). Taking 
limits as n 3 oo and using the continuity off and f', we find 

lim f(xn) = lim anJi", f'(x,), so 
n+cc n+ w 

f(X) = 0 .  f'(X) = 0. 

Newton's method, applied with care, can also be used to solve equations 
involving trigonometric or exponential functions. 

Example 10 Use Newton's method to find a positive number x such that sinx = x/2. 

Solution With f(x) = sinx - x/2, the iteration formula becomes 

sinx, - xn/2 2(xncosxn - sinx,) - - 
X"+i = xn - COSxn - 1/2 2 cos xn - 1 

Taking x, = 0 as our first guess, we get x,  = 0, x, = 0, and so forth, since zero 
is already a root of our equation. To find a positive root, we try another guess, 
say x, = 6. We get 

x, = 13.12652598 X, = 266.080335 1 

x, = 30.50101246 x, = 143.3754278 

x, = 176.5342378 

x, = 448.4888306 x, = - 759.1194553 

x,, = 3,572.554623 
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Figure 11.4.9. Newton's 
method goes awry. 

We do not seem to be getting anywhere. To see what might be wrong, we 
draw a sketch (Fig. 1 1.4.9). The many places where the graph of sin x - x/2 

I . '  

11 = sin x 

I .v = sin x - 5 2 

has a horizontal or nearly horizontal tangent causes the Newton sequence to 
make wild  excursion^.^ We need to make a better first guess; we try xo = 3. 
This gives 

We conclude that our root is somewhere near 1.89549427. Substituting this 
value for x in sinx - x/2 gives 1.0 x lo-". There may be further doubt 
about the last figure, due to internal roundoff errors in the calculator; we are 
probably safe to announce our result as 1.8954943. A 

You may find it amusing to try other starting values for x, in Example 10. For 
instance, the values 6.99, 7, and 7.01 seem to lead to totally different results. 
(This was on a HP 15C hand calculator. Numerical errors may be crucial in a 
calculation such as this.) Recently, the study of sequences defined by iteration 
has become important as a model for the long-time behavior of dynamical 
systems. For instance, sequences defined by simple rules of the form x,,, 
= ax,(l - x,) display very different behavior according to the value of the 
constant a. (See the supplement to this section and Exercise 59.) 

Supplement to Section 11.4 
Ne-n's Method and Chaos 

The sequences generated by Newton's method may exhibit several types of 
strange behavior if the starting guess is not close to a root: 

(a) the sequence x,, x,, x,, . . . may wander back and forth over the real line 
for some time before converging to a root; 

Try these calculations and those in Example 9 on your calculator and see if you converge to the 
root after many iterations. You will undoubtedly get different numbers from ours, probably due to 
roundoff errors, computer inaccuracies and the extreme sensitivity of the calculations. We got 
four different sets of numbers with four calculators. (The ones here were found on an HP 15C 
which also has a SOLVE algorithm which cleverly avoids many difficulties.) 
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(b) slightly different choices of xo or the use of different calculators may lead 
to very different sequences; 

(c) the sequence xo,x,,x,, . . . may eventually cycle between two or more 
values, none of which is a root of the equation we are trying to solve; 

(d) the sequence x,,xl,x,, . . . may wander "forever" without ever settling 
into a regular pattern. 

Recent research in pure and applied mathematics has shown that the type of 
erratic behavior just described is the rule rather than the exception for many 
mathematical operations and the physical processes which they model (see 
Exercise 59 for a simple example). Indeed, "chaotic" behavior is observed in 
fluid flow, chemical reactions, and biological systems, and is responsible for 
the inherent unpredictability of the weather. 

Some references on this work on "chaos", aimed at the nonexpert reader, 
are: 

M, J. Feigenbaum, "Universal behavior in nonlinear systems," Los Alamos 
Science 1 (Summer 1980), 4-27. 

D. R. Hofstadter, "Metamagical themas," Scientific American 245 (November 
198 l), 22-43. 

L. P. Kadanoff, "Roads to chaos," Physics Today 36 (December 1983), 46-53. 
D. Ruelle, "Strange attractors," Math. Intelligencer 2 (1980), 126-137. 
D. 6. Saari and J. B. Urenko, "Newton's method, circle maps, and chaotic 

motion," American Mathematical Monthly 91 (1984), 3-17; see also 92 (1985) 
157-158. 

Exercises Bar Section 1% .4 
1. If a, = 1/10 + 1/100 + - . . + 1/10", how large n - 3n2 17. lim - 18. lim n3 + 3n2 + 1 

must n be for 4 -an to be less than "jm n2 + 1 "jm n4 + 8n2 + 2 

2. If a, = 7/10 + 7/100 + . . . + 7/10", how large 3n2 - 2n + 1 - n(n+2)  
19. Ji% 

must n be for -a, to be less than lo-'? n(n + 1) (n + l)(n + 3) 1 
Find the limits of the sequences in Exercises 3 and 4. 

3. a, = 1 + 1/2 + 1/4+ . + 1/2". 
4. a,, = sin(na/2). 

Write down the first six terms of the sequences in 
Exercises 5-10. 

20. lirn 
2 + l /n  

"'* (n2 - 2)/(n2 + 1) 

(sin n)2 (1 + n)cos(n + 1) 
21. lirn - 

n-tm n + 2  
22. Jim, 

n 2 +  1 

5. k n = n 2 - 2 f i ; n = 0 , 1 , 2  , . . .  . 23. Jiir (-1)" . 2  24. Jiir cos(afi ) 
6. a, = (- l)"+'[(n - I)/n!]; n = 0,1,2, . . . n + l  n2 

(0!= l ,n !=n(n-  1 ) . - - 3 . 2 .  1.) @ Using numerical calculations, guess the limit as 
7. b,, = nb,-,/(I + n); bo = $. n -+ oo of the sequences in Exercises 25-28. Verify your 

8. c,,, = -cn/[2n(4n + I)]; cl = 2. answers using l'H6pital's rule. 

9. a,+, = [l/(n + l)]C$Eoai; a. = ' 2 -  
25. "m 26. "m 

10. k , = d m ; n = 1 , 2 , 3  , . . .  . 27.d- 28.q- 
Establish the limits in Exercises 1 1 - 14 using the E- N Find the limifs in hxc i ses  29-34. 
definition. 

3 11. lim - = 0  
n-tm n n-tm 

3 = o  13. lim - 14. lim - = O  
n-tm 2n + 1 n-tm 2n + 5 

Evaluate the limits in Exercises 15-24. 

3 n 15. lirn - 
n-tm n + 1 

2n 16. lim - 
8n - 1 

1 29. lirn - 
n+m xn 30. Jim, n" n + (3/4)" 

31. "5% 32. Find Jim, (a + ( 3  )")3 
n 2 + 2  

3b + (1/212" 3 
33. lim [ ] ; b constant 

n-+m n 2 -  1 

34. lim ( + e-2n ),; a constant 
n+m n -  1 
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935. (a) Use Newton's method to find a solution of 
x3 - 8x2 + 2x + 1 = 0. (b) Use division and the 
quadratic formula to find the othei- two roots.' 

136. Use Newton's method to find all real roots of 
x 3 - x + & .  

937. Use Newton's method to locate a root of f(x) 
= x 5  + x 2  - 3 with starting values xo = 0, 
x(, = 2. 

138. Use Newton's method to locate a zero for f(x) 
= x4 - 2x3 - 1. Use xo = 2, 3, and - l as start- 
ing values and compare the results. 

B39. Use Newton's method to locate-a root of tanx 
= x in [n/2,3n/2]. 

B40. Use Newton's method to find the following 
numbers: (a) fl; (b) 3fl 

B41. The equation tanx = ax  appears in heat conduc- 
tion problems to determine values XI, h2, X3, . . . 
that appear in the expression for the temperature 
distribution. The numbers A,, h2, . . . are the 
positive solutions of tanx = ax, listed in increas- 
ing order. Find the numbers hl,X2, h3 for a = 2, 
3,5, by Newton's method. Display your answers 
in a table. 

942. (a) Use Newton's method to solve the equation 
x2 - 2 = 0 to 8 decimal places of accuracy, 
using the initial guess xo = 2. 

* (b) Find a constant C such that Ix, - fl 1 
< Clx,-, - f l I 2 f o r n =  1, 2, 3, and4. (See 
Review Exercise 101 for the theory of the 
rapid convergence of Newton's method.) 

143. Experiment with Newton's method for evalua- 
tion of the root 1 / e  of the equation e-ex = I/ e. 

144. Enter the display value 1.0000000 on your 
calculator and repeatedly press the "sin" key 
using the "radian mode". This process gen- 
erates display . numbers a ,  = 1.0000000, a, = 

0.84147, a, = 0.74562, . . . . 
(a) Write a formula for a,, using function nota- 

tion. 
(b) Conjecture the value of lim,,,a,. Explain 

with a graph. 
145. Display the number 2 on your calculator. Re- 

peatedly press the "x2" key. You should get the 
numbers 2, 4, 16, 256, 65536, . . . . Express the 
display value a, after n repetitions by a formula. 

146. Let f(x) = 1 + l /x .  Equipped with a calculator 
with a reciprocal function, complete the follow- 
ing: 
(a) Write out f (  f (  f (  f( f( f(2)))))) as a division 

problem, and calculate the value. We abbre- 
viate this as f(6)(2), meaning to display the 
value 2, press the "l/x" key and add 1, 
successively six times. 

(b) Experiment to determine lim,,,[l/ f(")(2)] 
to five decimal places. 

47. Suppose that lim,,,a, = a and that a > 0. 
Prove that there is a positive integer N such that 
a, > 0 for all n > N. 

48. Let a, = 1 if n is even and - 1 if n is odd. Does 
lim,,,a, exist? 

49. If a radioactive substance has a talf-life of T, so 
that half of it decays after tim T, write a se- 
quence u,, showing the fraction remaining after 
time nT. What is lim,,,a,? 

50. Evaluate: 

Find the limit or prove that the limit does not exist in 
Exercises 5 1-54. 

( 1  + n)cosn 
54. Jim, 

n 
s55. (a) Give an A-N definition of what lim,,,a, 

= co means. (b) Prove, using your definition in 
part (a), that lim,,,[(l + n2)/(1 + 8n)]= co. 

+56. If a, -+ 0 and Ib,l < la,/, show that b, + 0. 
+57. Suppose that a,, b,, and c,, n = 1,2,3, . . . , are 

sequences of numbers such that for each n, we 
have a,, < b, < c,. 
(a) If lim,,,a, = L and if lim,,,b, exists, 

show that lim,,,h, > L. [Hint: Suppose 
not!] 

(b) If lim,,,a, = L = lim,,,e,, prove that 
lim,,,b, = L. 

+58. A rubber ball is released from a height h. Each 
time it strikes the floor, it rebounds with two- 
thirds of its previous velocity. 
(a) How far does the ball rise on each bounce? 

(Use the fact that the heighty of the ball at 
time t from the beginning of each bounce 
is of the form y = vt - tgt2 during the 
bounce. The constant g is the acceleration of 
gravity .) 

(b) How long does each bounce take? 
(c) Show that the ball stops bouncing after a 

finite time has passed. 
(d) How far has the ball travelled when it stops 

bouncing? 
(e) How would the results differ if this experi- 

ment were done on the moon? 

' For a computer, this method is preferable to using the formula for the roots of a cubic! 
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*59. (Research Problems) (b) Study the bizarre behavior of Newton's 
(a) Experiment with the recursion relation x,,, method in Example 9 for various starting 

= axn(l  - x,) for various values of the pa- values xo. Can you see a pattern? Does x,, 
rameter a where 0 < a 4 and x, is in always converge? 
[O, I]. How does the behavior of the se- (c) Study the bizarre behavior of Newton's 
quences change when a varies? method in Example 10. 

11.5 Numerical Integration 
Integrals can be approximated by sequences which can be computed numerically. 

The fundamental theorem of calculus does not solve all our integration 
problems. The antiderivative of a given integrand may not be easy or even 
possible to find. The integrand might be given, not by a formula, but by a 
table of values; for example, we can imagine being given power readings from 
an energy cell and asked to find the energy stored. In either case, it is 
necessary to use a method of numerical integration to find an approximate 
value for the integral. 

In using a numerical method, it is important to estimate errors so that the 
final answer can be said, with confidence, to be correct to so many significant 
figures. The possible errors include errors in the method, roundoff errors, and 
roundoff errors in arithmetic operations. The task of keeping careful track of 
possible errors is a complicated and fascinating one, of which we can give only 
some simple examples.8 

The simplest method of numerical integration is based upon the fact that 
the integral is a limit of Riemann sums (see Section 4.3). Suppose we are given 
f ( x )  on [a, b], and divide [a ,  b] into subintervals a = xo < x ,  < . . . < xn = b. 
Then J ~ ( X )  dx is approximated by Cr= , f(c,) AX,, where ci lies in [x i -  ,, xi] .  
Usually, the points xi are taken to be equally spaced, so Ax, = (b - a ) / n  and 
xi = a + i(b - a ) / n .  Choosing ci = xi or x i + ,  gives the method in the follow- 
ing box. 

and form the sum 

- [ f ( x , )  + f ( x * )  + . . ' + f ( x n ) ] .  

For a further discussion of error analysis in numerical integration, see, for example, P. J. Davis, 
Interpolation and Approximation, Wiley, New York (1963). 
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B Exarnple 1 Let f(x) = cosx. Evaluate J ~ / ~ c o s x  dx by the method of Riemann sums, 
taking 10 equally spaced points: x, = 0, x,  = n/20, x2 = 277/20, . . . , xlo 
= 10n/20 = n/2, and ci = xi. Compare the answer with the actual value. 

Solution Formula (la) gives 

The actual value is sin(n/2) - sin(0) = 1, so our estimate is about 7.6% off. A 

Unfortunately, this method is inefficient, because many points xi are 
needed to get an accurate estimate of the integral. For this reason we will seek 
alternatives to the method of Riemann sums. 

To get a better method, we estimate the area in each interval [xi-,,xi] 
more accurately by replacing the rectangular approximation by a trapezoidal 
one. (See Fig. 11.5.1.) We join the points (xi, f(x,)) by straight line segments to 
obtain a set of approximating trapezoids. The area of the trapezoid between 
xi-, and xi is 

Ai =+[f(xi-I)  +f(xi)]Axi 

since the area of a trapezoid is its average height times its width. 

(a) Rlemann sums method (b) Trapeze,,:.. c thud 

Figure 11.5.1. Comparing 
two methods of numerical 
integration. 

The approximation to Jif(x)dx given by the trapezoidal rule is 
Cy= I +[ f(xi- ,) + f(xi)] Axi. This becomes simpler if the points xi are equally 
spaced. Then Ax, = (b - a)/n, xi = a + i(b - a)/n, and the sum is 

which can be rewritten as 

b - a  - [ f(xo) + 2f(x,) + . . . + 2f(xn-1) +f(xn)l 
2 n 

since every term occurs twice except those from the endpoints. Although we 
used areas to obtain this.formula, we may apply it even if f(x) takes negative 
values. 
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and form the sum 

Formula (2) turns out to be much more accurate than the method of Riemann 
sums, even though it is just the average of the Riemann sums (la) and (lb). 
Using results of Section 12.5, one can show that the error in the method (apart 
from other roundoff or cumulative errors) is < [(b - a ) / 1 2 ] ~ , ( A x ) ~ ,  
where M, is the maximum of I f"(x)I on [a, b]. Of course, if we are given only 
numerical data, we have no way of estimating M,, but if a formula for f is 
given, M2 can be determined. Note, however, that the error depends on  AX)^, 
so if we divide [a, b] into k times as many divisions, the error goes down by a 
factor of l/k2. The error in the Riemann sums method, on the other hand, is 
< (b - a)M,(Ax), where MI is the maximum of I f'(x)I on [a, b]. Here Ax 
occurs only to the first power. Thus even if we do not know how large M,  and 
M, are, if n is taken large enough, the error in the trapezoidal rule will 
eventually be much smaller than that in the Riemann sums method. 

Example 2 Repeat Example 1 by using the trapezoidal rule. Compare the answer with the 
true value. 

Solution Now formula (2) becomes 

The answer is correct to within about 0.296, much better than the accuracy in 
Example 1. A 

Example 3 Use the trapezoidal rule with n = 10 to estimate numerically the area of the 
surface obtained by revolving the graph of y = x/(l + x2) about the x axis, 
O < x < l .  

Solution The area is given by formula (2) on p. 483: 

= 2.J 
, x d m  dx. 

(1 + X2 j 
There is little hope of carrying out this integration, so a numerical approach 
seems appropriate. We use the trapezoidal rule with the following values: 
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Figure 11.5.2. Illustrating 
Simpson's rule. 

where f(x) = x / (1 + x213. Inserting these data in the 
formula 

b - a  ~bf(x)dxw(r)[ f(xo) + 2f(x1) + . . ' +2f(xn-~)+f(xn)l 

with xi = a + [i(b - a)/n], a = 0 and b = 1, gives 

I X \ / ( l+  x2j' + (1 - x2f 
dxm 0.378 1 1, 

(1 + x2)' 

so the area is A w (21~)(0.37811) = 2.3757. Of course, we cannot be sure how 
many decimal places in this result are correct without an error analysis (see 
Exercise 17): A 

There is a yet more powerful method of numerical integration called 
Simpson's rule," which is based on approximating the graph by parabolas 
rather than straight lines. To determine a parabola we need to specify three 
points through which it passes; we will choose the adjacent points 

( x i - ( x i - ) )  ( i f ( i )  ( x i + I , f ( ~ i + ~ ) ) .  
It is easily proved (see Exercise 11) that the integral from xi-, to xi+, of the 
quadratic function whose graph passes through these three points is 

where Ax = xi - xi-, = xi+, - xi (equally spaced points). See Fig. 11.5.2. 

If we do this for every set of three adjacent points, starting at the left 
endpoint a-that is, for {xo7x,,x2), then {x2,x,,x,), then {x,,x,,x,), and so 
on-we will get an approximate formula for the area. In order for the points 
to fill the interval exactly, n should be even, say n = 2m. 

As in the trapezoidal rule, the contributions from endpoints a and b are 
counted only once, as are those from the center points of triples {x,-,,xi, 
xi+ ,) (that is, xi for i odd), while the others are counted twice. Thus we are led 
to Simpson's rule, stated in the box on the next page. 

This method is very accurate; the error in using formula (3) does not 
exceed [(b - a)/ 1801 M,(AX),, where M, is the maximum of the fourth deriva- 
tive of f(x) on [a, b]. As Ax is taken smaller and smaller, this error decreases 
much faster than in the other two methods. It is remarkable that juggling the 

The HP 15C has a clever integration program that is careful about errors. It gives 2.3832 for this 
integral in a few minutes. 

'' It was discussed by Thomas Simpson in his book, Mathematical Dissertations on Physical and 
Analytical Subjects (1743): 

Copyright 1985 Springer-Verlag.  All rights reserved.



554 Chapter 11 Limits, ~ ' ~ 6 p i t a l ' s  Rule, and Numerical Methods 

coefficients to give formula (3) in place of formula (1) or formula (2) can 
increase the accuracy so much. 

xi = a + i(b - a)/n. Form the sum 

b-Y [ f (XU) + 4f (XI) + Zf(x2) + 4f(x3) + Zf(x4) + . . 

B Example 4 Repeat Example 1 using Simpson's rule. Compare the answer with the true 
value. 

Solution Using a calculator, we can evaluate formula (3) by 

rn 1.0000034. 
The error is less than four parts in a million. A 

Example 5 Suppose that you are given the following table of data: 

Evaluate JA f (x) dx by Simpson's rule. 

Solution By formula (3), 

Inserting the given values off and evaluating on a calculator, we get 

1 bl f (x )dx=  - (49.042) = 1.635. 
30 

This should be quite accurate unless the fourth derivative off is very large. ,A 

Example 6 How small must we take Ax in the trapezoidal rule to evaluate ~ g e - ~ l d x  to 
within For Simpson's rule? 

Solution Let f(x) = e-"l, a = 2, and b = 4. The error in the trapezoidal rule is no more 
than [(b - a ) / 1 2 ] ~ ~ ( A x ) ~ ,  where M2 is the maximum of I f  "(x)I on [a, b]. We 
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find 

f (x) = -2xepx2, and f "(x) = - 2e-x2 + 4x2e-x2 = 2(2x2 - 1)epx2. 

NOW f"'(x) = (12x - 8x3)e-X2 = 4x(3 - 2x2)ebX2 < 0 on [2,4], so f"(x) is 
decreasing. Also, f "(x) > 0 on [2,4], so I f  "(x)/ = f "(x) < f "(2) = 1 4 e - ~  
= M2, so the error is at most 

To make this less than we should choose Ax so that 

 AX)^ < e410-6 . $ = 0.0000234, 

Ax < 0.0048. 
That is, we should take at least n = (b - a)/Ax = 416 divisions. 

For Simpson's rule, the error is at most [(b - a)/180]M~(Ax)~. Here 

f"'(x) = 4(4x4 - 12x2 + 3)eTX2. 

On [2,4], we find that 4x4 - 12x2 + 3 is increasing and e-x2 is decreasing, SO 

If""(x)I < 4(4 - 44 - 12. 42 + 3)eU4 

=61.17 = M4. 

Thus [(b - a)/ 1801 M,(Ax)~ = & - 6 1.17(Ax)~ = 0.68(Ax)~. Hence if we are to 
have error less than lod6, it suffices to have 

0 . 6 8 ( ~ x ) ~  < 
Ax < 0.035. 

Thus we should take at least n = (b - a)/Ax = 57 divisions. ,A 

Exercises for Section 111.5 
Use the indicated numerical method(s) to approximate data: 
the integrals in Exercises 1-4. 

1 1. J'_ ,(x2 + 1) dx. Use Riemann sums with 
f(0) = 1.384 f(0.4) = 0.915 f(0.8) = 0.935 

n = 10 (that is, divide [ -  1,1] into 10 subinter- f (0.1) = 1.179 f (0.5) = 0.768 f (0.9) = 1.262 

vals of equal length). Compare with the actual f(0.2) = 0.973 f(0.6) = 0.51 1 f(1.0) = 1.425 
value. f(0.3) = 1 .OOO f(0.7) = 0.693 

B2. J;l2(x + sinx)dx. Use Riemann sums and the 
trapezoidal rule with n = 8. Compare these two 
approximate values with the actual value. 

B3. J:[(sinvx/2)/(x2 + 2x - l)]dx. Use the trape- 
zoidal rule and Simpson's rule with n = 12. 

14. J : ( l / J m ) d x .  Use the trapezoidal rule and 
Simpson's rule with n = 20. 

85. Use Simpson's rule with n = 10 to find an ap- 
proximate value for J , ! , ( x / \ I n )  dx. 

16. Estimate the value of J:eG dx, using Simpson's 
rule with n = 4. Check your answer using 
x = u2, dx = 2udu. 

Numerically evaluate J,!,(x + f(x)) dx by the 
trapezoidal rule. 

H8. Numerically evaluate J,!,2 f(x) dx by Simpson's 
rule, where f(x) is the function in Exercise 7. 

19. Suppose that you are given the following table 
of data: 

f(O.0) = 2.037 f(1.3) = 0.819 
f(0.2) = 1.980 f(1.4) = 1.026 
f(0.4) = 1.843 f(1.5) = 0.799 
f(0.6) = 1.372 f(1.6) = 0.662 
f(O.8)=1.196 f(1.7)=0.538 

87. Suppose you are given the following table of f(1.0) = 0.977 f(1.8) = 0.555 
f(l.2) = 0.685 
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Numerically evaluate Jb8f(x)dx by using 
Simpson's rule. [Hint: Watch out for the spac- 
ing of the points.] 

B10. Numerically evaluate J,$8f(x)dx by using the 
trapezoidal rule, where f(x) is the function in 
Exercise 9. 

11. Evaluate Ib,(px2 + qx + r) dx. Verify that 
Simpson's rule with n = 2 gives the exact an- 
swer. What happens if you use the trapezoidal 
rule? Discuss. 

12. Evaluate Jb,(px3 + qx2 + rx + s)dx by Simp- 
son's rule with n = 2 and compare the result 
with the exact integral. 

B13. How large must n be taken in the trapezoidal 
rule to guarantee an accuracy of lo-' in the 
evaluation of the integral in Exercise 2? An- 
swer the same question for Simpson's rule. 

14. Gaussian quadrature is an approximation 
method based on interpolation. The formula 
for integration on the interval [ -  1, 11 is 

I! , f(x)dx = f ( l / f i )  + f(- 1 / f i )  + R, where 
the remainder R satisfies IR I < M/135, M be- 
ing the largest value of f(4)(x) on - 1 < x < 1. 
(a) The remainder R is zero for cubic polyno- 

mials. Check it for x3, x3 - 1, x3 + x + 1. 
(b) Find 11 ,[x2/(1 + x4)]dx to two places. 
(c) What is R for J!,x6dx? Why is it so 

large? 
m15. A tank 15 meters by 60 meters is filled to a 

depth of 3.2 meters above the bottom. The time 
T it takes to empty half the tank through an 
orifice 0.5 meters wide by 0.2 meters high 
placed 0.1 meters from the bottom is given by 

Compute T from Simpson's rule with n = 6. 
*16. A metropolitan sports and special events com- 

plex is circular in shape with an irregular roof 
that appears from a distance to be almost 
hemispherical (Fig. 1 1.5.3). 

Figure 11.5.3. The profile 
of the roof of a sports 
complex. 

A summer storm severely damaged the 
roof, requiring a roof replacement to go out for 
bid. Responding contractors were supplied 
with plans of the complex from which to deter- 
mine an estimate. Estimators had to find the 
roof profile y = f(x), 0 < x < H, which gener- 

ates the roof by revolution about the x axis (x 
and y in feet, x vertical, y horizontal). 
(a) Find the square footage of the roof via a 

surface area formula. This number deter- 
mines the amount of roofing material re- 
quired. 

(b) To check against construction errors, a 
tape measure is tossed over the roof and 
the measurement recorded. Give a for- 
mula for this measurement using the arc 
length formula. 

(c) Suppose the curve f is not given explicitly 
in the plans, but instead f(O), f(4), f(8), 
f(l2), . . . , f (H)  are given (complex cen- 
ter-to-ceiling distances every 4 feet). Dis- 
cuss how to use this information to numer- 
ically evaluate the integrals in (a), (b) 
above, using Example 3 as a guide. 

(d) Find an expression which approximates 
the surface area of the roof by assuming it 
is a conoid produced by a piecewise linear 
function constructed from the numbers 
f(O), f(4h f(8), . . . ,f(H). 

*17. How many digits in the approximate value 
A = 2.3757 in Example 3 can be justified by an 
error analysis? 

* 18. (Another numerical integration method) 
(a) Let (XI,  YI), (XI, YZ), . . . t (xn, yn) be TI 

points in the plane such that all the xi's are 
different. Show that the polynomial of de- 
gree no more than n - 1 whose graph pas- 
ses through the given points is 

+ . . .  + ynLn(x), 
where Li(x) = Ai(x)/A '(xi), 

A ( x ) = ( x - x I ) ( x - x 2 ) .  . . (x-x,), 

Ai(x) = A (x)/(x - xi), 
i =  1,2, .  . . , n .  

( P  is called the Lugrange interpolation poly- 
nomial.) 

(b) Suppose that you are given the following 
data for an unknown function f(x): 

f(0) = 0.01, f(0.3) = 1.18, 

f (0.1) = 0.12, f (0.4) = 0.9 1. 

f (0.2) = 0.82, 

Estimate the value of f(0.16) by using the 
Lagrange interpolation formula. 

(c) Estimate (;4f(x)dx (1) by using the trape- 
zoidal rule, (2) by using Simpson's rule, 
and (3) by integrating the Lagrange inter- 
polation polynomial. 

(d) Estimate 1g/2cos x dx by using a Lagrange 
interpolation polynomial with n = 4. Com- 
pare your result with those obtained by 
the trapezoidal and Simpson's rules in Ex- 
amples 2 and 4. 
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Review Exercises for Chapter 111 
Verify the limits in Exercises 1-4 using the E-S defini- 
tion. 

2. lirn (x3 + 3x + 2) = 2 
x+o 

3. lim(x2 - 8x + 8)- -4 
x+2 

4. lim (x2 - 25) = 0 
x+5 

Calculate the limits in Exercises 5-16. 
5. Iim t a n ( 4 )  

x+O x - 1 .. . 

6. X+ lim I c o s [ ( a )  x + 2  $ ] 

9. lim ( d m  - x) 10. lim (I/= - 2x) 
x+m x+m 

1 11. lim - 12. lim 
sin- 

x + l -  JT--x x+2+ 

x4 + 8x 15. lim - 
x-0 3x4 + 2 

x + 3  16. lim - 
X+O 3~ + 8 

17. Find the horizontal asymptotes of the graph 
y = tan-'(3x + 2). Sketch. 

18. Find the vertical asymptotes for the graph of 
y = 1/(x2 - 3x - 10)'. Sketch. 

Find the horizontal and vertical asymptotes of the 
functions in Exercises 19 and 20. and sketch. 

37. lim x2e-X 
x+m 

38. lim ~ ~ ( l n x ) ~  
x+O + 

39. lim x""" 40. lim (sine-")'/& 
x+o+ X + M  

41. lim (I + sin2x)'/" 42. lirn (cos 2x)'/"' 
x+o+ x+o+ 

(In x ) ~  
43. lim - 44. lim x 2 + x - 6  

x+m x x-2 x 2 + 2 x - 8  

Decide which improper integrals in Exercises 45-54 are 
convergent. Evaluate when possible. 

45. 1" -$ dx. 46. J-m dx. 
m x 2 + 3  

47. La g. [Hint: Prove lnx < x for x > 2.1 

49. dx. dx. 

Evaluate the limits in Exercises 55 and 56. 

5 5  i X  dt 56. lim J1$ 
x+m 0 t 2 + t + 1  x+O+ x 

Find the limits if they exist, using l'H6pital's rule, in 57. The region under the curvey = xe-" on [0, co) 

Exercises 2 1-44. is revolved about the x axis. Find the volume of 

x the resulting solid. 21. lim x3 + 8x + 9 22. lim - 
x+m 4X3 - 9X2 + 10 x+m x + 2 58. The curve y = sin x/x2 on [I, oo) is revolved 

1 - cosx xx  - 1 around the x axis. Determine whether the re- 
23. lim - 24. lim - 

X+O 3X - 2" x + ~  x -  1 sulting surface has finite area. 

( d m  - 3) 7 7 ~ ~ - 3  
Evaluate the limits of the sequences in Exercises 59-72. 

25. lim 26. lim 
x + ~  sinx X+O x 59. ( lim 8 + ($)")I 

sin 5x 27. lirn - tan2x 28. lirn - 
x+o x x+o x2 

sin(x - 2) - x + 2 
29. lirn 

~ - 2  (X - 213 

30. lirn 24cosx - 24 + 12x2 - x4 
x+o x 

tan(x + 3) - tan 3 
31. lim 

-413 X + ,- 

cosJ;; + 1 
32. lim 

x+w2 X - 7r2 
33. lim x cot x cot x 34. lirn - 

X+O X+O+ lnx 

( f ) 62. lim 
-2" 

61. lim 1 + - " 
n+m 

63. )I+% (n2 + 3n + 1)e-" 

2" n 64. lirn - 65. lim - 
n+m n2  "+m n + 2 

n2 + 2n 66. lim - 67. lim tan [ A ] 
3n2 + 1 n+m n + 8  
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sin(m/2) 
69. iim, n cos 4nn 70. lirn - 

nm3 n+m 2 n +  1 

8 - 2n 71. lim - 
n-tm 5n 

72. lim (1 - ") 
n+m 3n + 1 

Using l'H6pital's rule if necessary, evaluate the limits of 
the sequences in Exercises 73-76. 

73. lirn '"fi 
n-tm 

74. dimm m 10g,~(2-'~) 

75. hl - - 2e3~  76. lirn - [ $  TnSiji] j+me3j+j5  

Use Newton's method for Exercises 77-80. 

a77. Locate the roots of x3 - 3x2 + 8 = 0. 
B78. Find the cube root of 21. 
179. Solve the equation ex = 2 + x. 
180. Find two numbers, each of whose square is 

ten times its natural logarithm. 

a81. Evaluate J:(xZ d x / J m )  by the trapezoi- 
dal rule with n = 10. 

182. Evaluate the integral in Exercise 81 by Simp- 
son's rule with n = 10. 

B83. Use Simpson's rule with n = 10 to calculate 
the volume obtained by revolving the curve 
y = f(x) on [l, 31 about the x axis, given the 
data: 

f(1) = 2.03 f(2.2) = 3.16 
f(l.2) = 2.08 f(2.4) = 3.01 
f(l.4) = 2.16 f(2.6) = 2.87 
f(l.6) = 2.34 f(2.8) = 2.15 
f(1.8) = 2.82 f(3) = 1.96 

f(2) = 3.01 

B84. (a) Evaluate (2/fi)J;e-'' dt by using Simp- 
son's rule with 10 subdivisions. 

(b) Given an upper bound for the error in 
part (a). (See Example 6 of Section 1 1.5.) 

(c) What does Simpson's rule with 10 sub- 
divisions give for (2/fi)JA0e -'' dt? 

(d) The function (2/fi)l$e -" dt is denoted 
erf(x) and is called the error function. Its 
values are tabulated. (For example: 
Handbook of Mathematical Functions, Na- 
tional Bureau of Standards, Applied 
Mathematics Series 55, June 1964, pp. 
3 10-3 11 .) Compare your results with the 
tabulated results. Note: lim,,,erf(x) 
= 1, and erf(l0) is so close to 1 that it 
probably won't be listed in the tables. 
Explain your result in part (c). 

85. Let f(x) = cosx for x > 0 and f(x) = 1 for 
x < 0. Decide whether or not f is continuous 
or differentiable or both. 

86. Let f(x) = x ' / ~ ' " ( ~ - ~ ) .  How should f(1) be 
defined in order to make f continuous? 

87. Find a function on [0, I] which is integrable 
(as an improper integral) but whose square is 
not. 

88. Show that J,"[(sinx)/(l + x)]dx is conver- 
gent. [Hint: Integrate by parts.] 

89. (a) Show that 

f"(xo) = lim f(x0 + h) - 2f(xo) +f(xo - h) 
h-tO h2 

i f f "  is continuous at xo. [Hint: Use l'H6pi- 
tal's rule.] 
*(b) Find a similar formula for f"'(xo). 

90. Show that 

f"(xo) = lirn f (xo + 2Ax) + f (xo) - 2f (xo + Ax) 
Ax-0 (Ax)2 

iff" is continuous at xo. 
9 1. Use Riemann sums to evaluate 

lirn x (Inn - lni)/n. 
n+m . r=l 

92. Let 

Prove that limnjmSn = 4 using Riemann 
sums. 

93. Let 

Prove that Sn + as n + co by using Riemann 
sums. 

94. Expressing the following sums as Riemann 
sums, show that: 

3'2 1 - 4 . (a) n-tm lim . ~ [ f i - )  I,-,, 
r = l  

n 
3n - 1 (b) lirn - - - 

(2n+i12 2 '  

95. P dollars is deposited in an account each day 
for a year. The account earns interest at an 
annual rate r (e.g., r = 0.05 means 5%) com- 
pounded continuously. Use Riemann sums to 
show that the amount in the account at the 
end of the year is approximately 

(365P/r) (er - 1). 
*96. Evaluate: 

Iim [ + t a n 6  . 
x+n2 (fi - n)(fi + n) I 

*97. Limits can sometimes be evaluated by geo- 
metric techniques. An important instance oc- 
curs when the curve y = f(x) is trapped be- 
tween the two intersecting lines through (a, L) 
with slopes m and -m, 0 < Ix - a1 < h. 
Then lim,,,f(x) = L, because points ap- 
proaching y = f(x) from the left or right are 
forced into a vertex, and therefore to the point 
(a, L). 
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(a) The equations of the two lines are y 
= L + m(x  - a),  y = L - m(x - a) .  
Draw these on a figure and insert a repre- 
sentative graph for f which stays between 
the lines. 

(b) Show that the algebraic condition that f 
stay between the two straight lines is 

This is called a Lipschitz condition. 
(c) Argue that a Lipschitz condition implies 

lim,,J(x) = L, by appeal to the defini- 
tion of limit. 

*98. Another geometric technique for evaluation of 
limits is obtained by requiring that y = f(x) 
be trapped on 0 < Ix - a1 < h between two 
power curves 

where a > 0, m > 0. The resulting algebraic 
condition is called a Hijlder condition: 

(a) Verify that the described geometry leads 
to the Holder condition. 

(b) Argue geometrically that, in the presence 
of a Holder condition, limX,,f(x) = L. 

(c) Prove the contention in (b) by appeal to 
the definition of limit. 

*99. Prove the chain rule for differentiable func- 
tions, (f 0 g)'(xo) = f'(g(xo)) . g1(x0), as fol- 
lows: 
(a) Let y = g(x) and z = f(y), and write Ay 

= gf(xo) Ax + p(x). Show that 

lim - - 
Ax+O Ax 

Also write Az = f'(yo) Ay + a(y), where 
yo = g(xo) and show that 

"(Y) = 0. lim - 
~ y - o  Ay 

(b) Show that 

Az = f ' ( ~ o )  g'(x0) Ax + f'(yo)p(x) + o(g(x)). 

(c) Note that o(g(x)) = 0 if Ay = 0. Thus 
show that 

as Ax + 0. 
(d) Use parts (a), (b), and (c) above to show 

that limA,.+o[Az/Ax] = f'(yo)gf(x0). (This 
proof avoids the problem of division by 
zero mentioned on p. 113.) 

*loo. An alternative to Newton's method for find- 
ing solutions of the equation f(x) = 0 is the 
iteration scheme 

sometimes known as Picard's method. Notice 
that this method requires evaluating f only at 
the initial guess xo and so requires less compu- 
tation at each step. 
(a) Show that, if the sequence XO, XI ,  x2, . . . 

converges, then limn,,xn is a solution of 
f(x) = 0. 

(b) Compare Picard's method and Newton's 
method on the problem x5 = x + 1, using 
the initial guess xo = 1 in each case and 
iterating until the solution is found to six 
decimal places of accuracy. 

(c) Suppose that f(q) = 0 and in addition 
that 0 < ff'(xo) < f (x)  <4f'(xo) for all x 
in the interval I = (q - a, q + a). Prove 
that if xo is any initial guess in I, then 
Ixn+l - 41 <tIxn - 41, and so limn+mxn 
= q. [Hint: xn+,  = P(x,), where P(x) 
= x - f (x)/ffxo). Differentiate P(x)  
and apply the mean value theorem.] (A 
similar analysis for Newton's method is 
presented in the following Review Exer- 
cise.) 

* 101. Newton's method for solving f(x) = 0 can be 
described by saying that xn+ I = N(xn), where 
the Newton iteration function N is defined by 
N(x) = x - f(x)/f(x) for all x such that 
f (x> # 0. 
(a) Show that N(x) = x if and only if f(x) 

= 0 
(b) Show that N1(x) = f(x)fl'(x)/[ f'(x)I2 
(c) Suppose that X is a root off, that [a, b] is 

an interval containing X, and that there 
are numbersp, q and M such that 

O < p  < f ( x )  < q and If"(x)I < M 

for all x in [a, b]. Show that there is a 
constant C such that 

for all x in [a, b]. Express C in terms of p, 
q and M. 

This establishes the "quadratic con- 
vergence" of xo, x, ,  x2, . . . to X as soon 
as some xi is in [a, b]. [Hint: Apply the 
mean value theorem to N to conclude 
N(x) - x = N1(.$)(x - X) for some .$ be- 
tween x and X. Use the mean value theo- 
rem again to show that IN'(.$)/ < D I.$[ for 
a constant D > 0.1 

(d) How many iterations are needed to solve 
x2 - 2 = 0 to within 20 decimal places, 
assuming an initial guess in the interval 
[ I  .4. I S ] ?  

Copyright 1985 Springer-Verlag.  All rights reserved.



Copyright 1985 Springer-Verlag.  All rights reserved.



Chapter 12 

nfinite Series 

Infinite sums can be used to represent numbers and functions. 

The decimal expansion f = 0.3333 . . . is a representation of f as an infinite 
sum & + & + + & + - . . In this chapter, we will see how to repre- 
sent numbers as infinite sums and to represent functions of x by infinite sums 
whose terms are monomials in x. For example, we will see that 

and 

x3 + sinx = x - ---- x - . . .  
1 . 2 . 3  1 . 2 . 3 - 4 . 5  

Later in the chapter we shall use our knowledge of infinite series to study 
complex numbers and some differential equations. There are other important 
uses of series that are encountered in later courses. One of these is the topic of 
Fourier series; this enables one, for example, to decompose a complex sound 
into an infinite series of pure tones. 

"1.1 The Sum of an 
Infinite Serles 
The sum of infinitely many numbers may be finite. 

An infinite series is a sequence of numbers whose terms are to be added up. If 
the resulting sum is finite, the series is said to be convergent. In this section, we 
define convergence in terms of limits, give the simplest examples, and present 
some basic tests. Along the way we discuss some further properties of the 
limits of sequences, but the reader should also review the basic facts about 
sequences from Section 1 1.4. 

Our first example of the limit of a sequence was an expression for the 
number f : 

This expression suggests that we may consider 4 as the sum 
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of infinitely many terms. Of course, not every sum of infinitely many terms 
gives rise to a number (consider I + 1 + 1 + - . - ), so we must be precise 
about what we mean by adding together infinitely many numbers. Following 
the idea used in the theory of improper integrals (in Section 11.3), we will 
define the sum of an infinite series by taking finite sums and then passing to 
the limit as the sum includes more and more terms. 

= a ,  + a, + - . . + a, is called the nth partial sum of the aiYs. If the 
sequence S , ,  S,, . . . of partial sums approaches a limit S as n + oo, we 
say that the series a ,  + a, + . = CF= ,ai converges, and we write 

and is called the sum of the series. 

If the series C?= ,ai does not converge, we say that it diverges. In this 
case, the series has no sum. 

Example 1 Write down the first four partial sums for each of the following series: 

1 1 1 1  (a) I + -  + -  + -  + -  + - 0 . ;  

2 4 8 1 6  
1 1 1 1 1  (b) I - - + - - - + - - - +  . . . .  
2 3 4 5 6  
1 1 1 1  (c) I + -  + -  + -  + -  + . . a ;  

5 5, 53 54 

1 1 7  Solution (a) S, = 1, S2 = 1 + 1/2 = 3/2, S, = 1 + - + - = -, 
2 4 4  

1 1 1 1 5  a n d S 4 = 1 + -  + -  + -  =-. 
2 4 8 8  

1 1  1 1 5  ( b ) S  - 1  S - I - - = -  S - I - - + - = -  
1 -  , 2 -  2 2 '  3 -  2 3 6 '  

1 1 1 7  a n d S  - I - - + - - - = - .  
4 -  2 3 4 12 

1 6  1 1 31 (c) S , = l , S , = l + -  = - , S 3 = I + -  + - = - ,  
5 5 5 52 25 

1 1  1 156 a n d S 4 = 1 + - + - + - = - .  
5 25 125 125 
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1 9 9 1 I 

0 s ,s ,  s2s4 

Figure 12.1.1. The term ai 
of a series represents the 
"move" from the partial 
sum Si-, to Si. Sn is the 
cumulative result of the 
first n moves. 

Do not confuse a sequence with a series. A sequence is simply an infinite list of 
numbers (separated by commas): a,,a,,a,, . . . . A series is an infinite list of 
numbers (separated by plus signs) which are meant to be added together: 
a ,  + a, + a, + . - . Of course, the terms in an infinite series may themselves 
be considered as a sequence, but the most important sequence associated with 
the series a ,  + a, + . - is its sequence of partial sums: S , ,  S,, S,, . . . -that 
is, the sequence 

a , , a ,  + a,,a, + a,+ a,, . . . . 
We may illustrate the difference between the ai's and the Sn's pictorially. 

Think of a , ,  a,, a,, . . . as describing a sequence of "moves" on the real 
number line, starting at 0. Then Sn = a ,  + . . + an is the position reached 
after the nth move. (See Fig. 12.1.1 .) Note that the term ai can be recovered as 
the difference Si - Sip,. 

To study the limits of partial sums, we will need to use some general 
properties of limits of sequences. The definition of convergence of a sequence 
was given in Section 11.4. The basic properties we need are proved and used 
in a manner similar to those for limits of functions (Section 11.1) and are 
summarized in the following display. 

and that c is a constant. Then: 

1. limn,,(an + bn) = limn,,an + limn,, bn . 
2. limn, ,(can) = c limn,,an . 
3. limn+,(anbn) = (limn+,an) . (limn +,bn). 
4. If limn+,bn f: 0 and bn f 0 for all n, then 

5. If f is continuous at limn,,an, then 

7. limn+w(l/n) = 0. 

Here are a couple of examples of how the limit properties are used. We will 
see many more examples as we work with series. 

Example 2 Find (a) lim 3+n and (b) lim sin -.2!E- 
n+m 2n + 1 n+m ( 2 n  + I 

3 + n - lim 3/n + 1 n / n  + l i m n  - 3 . 0  + 1 - - - 1 Solution (a) lim ---.---- - - - - 
n+, 2n + 1 n - m  2 + l /n  1 m n 2  + 1 i m n l / n  2 + 0 2 ' 
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This solution used properties 1, 2, and 4 above, together with the facts that 
lim,,,l/n = 0 (property 7) and lim,,,c = c (property 6). 
(b) Since sinx is a continuous function, we can use property 5 to get 

= sin lim ---- 
[ n + W  ( 2 +Tl/n I ]  

=sin(;) = 1. A 

We return now to infinite series. A simple but basic example is the geometric 
series 

a + a r + a r 2 +  - 0 -  

in which the ratio between each two successive terms is the same. To write a 
geometric series in summation notation, it is convenient to allow the index i to 
start at  zero, so that a, = a, a ,  = ar, a, = ar2, and so on. The general term is 
then ai = ari, and the series is compactly expressed as CT=,ari. In our 
notation CT= 'ai for a general series, the index i will start at 1, but in special 
examples we may start it wherever we wish. Also, we may replace the index i 
by any other letter; CT= *=,ai = Xi", ,aj = Zy= '=,an, and so forth. 

To find the sum of a geometric series, we must first evaluate the partial 
sums Sn = CC=,ari. We write 

Subtracting the second equation from the first and solving for Sn, we find 

a ( l  - rn+l)  
Sn = (if r # 1). 

1 - r  

The sum of the entire series is the limit 

ar '= lim Sn 
i = O  n-+w 

a ( l  - rn+ ' )  
= lim - -- 

n+co 1 - r  a lim (I - rn+ ' )  1 - r n-+w 

=L( 1 - lim rn+ ' ) .  
1 - r  n-+w 

(We used limit properties 1, 2, and 6.) If Irl < 1, then limn,,rn+ ' = 0 
(property 9), so in this case, CT= 'ar' is convergent, and its sum is a/( l  - r). If 
Irl > 1 or r = - 1, limn,,rn+ ' does not exist (property 9), so if a # 0, the 
series diverges. Finally, if r = 1, then Sn = a + ar + . - . + arn  = a(n + I), so 
if a # 0, the series diverges. 

If Irl < 1 and a is any number, then a + ar + ar2 + . = C?=oari 
converges and the sum is a/( l  - r). 

If I rl > I and a # 0, then C?=,ari diverges. 
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1 " 1 Example 3 Sum the series: (a) 1 + 4 + 4 + + h + - . . , (b) x 7 ;71. and (c) 2 ; . 
n = o  6 i = 1  5 

Solution (a) This is a geometric series with r = 4 and a = 1. (Note that a is the first 
term and r is the ratio of any term to the preceding one.) Thus 

(b) ~,"=,[1/(6"/~)] = 1 + ( I /  J6)  + ( I /  J6 )2 + . . = a / ( l  - r), where 
a = 1 and r = I/$, so the sum is 1/(1 - I/$) = (6 + $)/5. (Note that the 
index here is n instead of i.) 

(c) CF=11/5i = 1/5 + 1/52 + . . . = (1/5)/(1 - 1/5) = 1/4. (We may also 
think of this as the series CF=,l/5' with the first term removed. The sum is 
thus 1/[1 - (1/5)] - 1 = 1/4.) A 

The following example shows how a geometric series may arise in a'physical 
problem. 

Exarnple 4 A bouncing ball loses half of its energy on each bounce. The height reached 
on each bounce is proportional to the energy. Suppose that the ball is dropped 
vertically from a height of one meter. How far does it travel? (Fig. 12.1.2.) 

Figure 12.1.2. Find the 
total distance travelled by 
the bouncing ball. 

Solution Each bounce is 112 as high as the previous one. After the ball falls from a height 
of 1 meter, it rises to 112 meter on the first bounce, (1/2)2 = 114 meter on the 
second, and so forth. The total distance travelled, in meters, is 1 + 2(1/2) + 
2(1/2)2 + 2(1/2)3 + - . . , which is 

Two useful general rules for summing series are presented in the box on the 
following page. To prove the validity of these rules, one simply notes that the 
identities 

x ( a i + b i ) = ~ a i + ~ b i  and x c a i = c x a i  
i=  1 i = l  i = l  i=  1 i =  1 

are satisfied by the partial sums. Taking limits as n -+ co and applying the sum 
and constant multiple rules for limits of sequences results in the rules in the 
box. 
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Sum rule 
If C?= lai and C?= bi converge, then C?= ,(ai + bi) converges and 

Constant multiple rule 

0 0 .  3' - 2' 
Example 5 Sum the series x - . 

i=o 6' 
Solution We may write the ith term as 

Since the series C?=*=,(1/2)' and C?=*=,((1/3)' are convergent, with sums 2 and 4 
respectively, the algebraic rules imply that 

Example 6 Show that the series 1 f + 3 f + 7 H + 15 + . diverges. [Hint: Write it as 
the difference of a divergent and a convergent series.] 

Solution The series is C?=*=,[[2' - (f)']. If it were convergent, we could add to it the 
convergent series C?=*=,(f)', and the result would have to converge by the sum 
rule; but the resulting series is C?=*=,[2' - (4)' + (f)'] = C?=02i, which diverges 
because 2 > 1, so the original series must itself be divergent. a 
The sum rule implies that we may change (or remove-that is, change to zero) 
finitely many terms of a series without affecting its convergence. In fact, 
changing finitely many terms of the series CT= ,ai is equivalent to adding to it 
a series whose terms are all zero beyond a certain point. Such a finite series is 
always convergent, so adding it to the convergent series produces a convergent 
result. Of course, the sum of the new series is not the same as that of the old 
one, but rather is the sum of the finite number of added terms plus the sum of 
the original series. 

Example 7 Show that 

is convergent and find its sum. 

Solution The series 1/4 + 1 /42 + 1/43 + 1/44 + . . . is a geometric series with sum 
(1/4)/(1 - 1/4) = 1/3; thus the given series is convergent with sum 1 + 2 + 
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3 + 4 + 1/3 = 10 j. To use the sum rule as stated, one can write 

We can obtain a simple necessary condition for convergence by recalling that 
a, = Si - Sip, .  If limi,,Si exists, then limi,,Si- has the same value. Hence, 
using properties 1 and 2 of limits of sequences, we find limi+,ai = 

limi+,Si - limi,,Si-, = 0. In other words, if the series Cy= ,ai converges, 
then, the "move" from one partial sum to the next must approach zero (see 
Fig. 12.1.1). 

If Cy= ,ai converges, then limi,,ai = 0. 
If limi+,ai # 0, then C?= ,ai diverges. 
If limi,,ai = 0, the test is inconclusive: the series could converge or 
diverge, and further analysis is necessary. 

The ith-term test can be used to show that a series diverges, such as the one in 
Example 6, but it cannot be used to establish convergence. 

m .  00 

Example 8 Test for convergence: (a) 2 - 1 
i =  1 l + i Y  i = l  

i ,1 as i +  ca. Since ai does not tend to zero, Solution (a) Here ai = - - ------ 
l + i  l / i + 1  

the series must diverge. 

(b) Here lai/ = i / m  =fi//m -+ ca as i+ oo. Thus ai does not tend 
to zero, so the series diverges. 
(c) Here ai = l / i ,  which tends to zero as i + oo, so our test is inconclusive. 8, 

As an example of the "further analysis" necessary when limi+,ai = 0, we 
consider the series 

from part (c) of Example 8, called the harmonic series. We show that the series 
diverges by noticing a pattern: 

and so on. Thus the partial sum S, is greater than 1 + 4 + 4 = 1 + 5, 
S, > 1 + 5 + 4 + 4 = 1 + t and, in general S," > 1 + n/2, which becomes 
arbitrarily large as n becomes large. Therefore, the harmonic series diverges. 
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Example 9 Show that the series (a) 3 + f + + $ + . . - and (b) CF= "=,/(I + i) diverge. 

Solution (a) This series is CF="=,l/2i). If it converged, so would twice the series 
CF=12 . (1/2i), by the constant multiple rule; but Cy= ,(2 . 1/2i) = ZF= l/ i ,  
which we have shown to diverge. 
(b) This series is 3 + f + f + - - . , which is the harmonic series with the first 
term missing; therefore this series diverges too. A 

Supplement to Section 12.1 : 
Zeno's Paradox 

Figure 12.1.3. Will the. 
runner overtake the 
tortoise? 

Zeno's paradox concerns a race between Achilles and a tortoise. The tortoise 
begins with a head start of 10 meters, and Achilles ought to overtake it. After 
a certain elapsed time from the start, Achilles reaches the point A where the 
tortoise started, but the tortoise has moved ahead to point B (Fig. 12.1.3). 

After a certain further interval of time, Achilles reaches point B, but the 
tortoise has moved ahead to a point C,  and so on forever. Zeno concludes 
from this argument that Achilles can never pass the tortoise. Where is the 
fallacy? 

The resolution of the paradox is that although the number of time 
intervals being considered is infinite, the sum of their lengths is finite, so 
Achilles can overtake the tortoise in a finite time. The word forever in the 
sense of infinitely many terms is confused with "forever" in the sense of the 
time in the problem, resulting in the apparent paradox. 

Exercises for Section 12.1 
Write down the first four partial sums for the series in Sum the series in Exercises 5-8. 
Exercises 1-4. 

1. + + + + $ + f  + . . .  5 . l + - + - + - + . . .  1 1 1  
8 + & -  . . .  2. 1 - 3  +' -' 7 72 73 

2 2 2  
3. 5 (;y 6. 2 + - + - + - + . . .  

r = l  
9 92 93 
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9. You wish to draw $10,000 out of a Swiss bank 
account at age 65, and thereafter you want to 
draw as much each year as the preceding one. 
Assuming that the account earns no interest, how 
much money must you start with to be prepared 
for an arbitrarily large life span? 

10. A decaying radioactive source emits & as much 
radiation each year as the previous one. Assum- 
ing that 2000 roentgens are given off in the first 
year, what is the total emission over all time? 

Sum the series (if they converge) in Exercises 11-20. 

nth term a, can be expressed as a, = b,, , - b, 
for some sequence b,. 
(a) Verify that a ,  + a, + a, + . . . + a, = 

b, + , - b, ; therefore the series converges ex- 
actly when lim,,,b,+, exists, and Cr= 
= lim,+,b,,+, - b l .  

(b) Use partial fraction methods to write a, 
= I/[n(n + I)] as b,, , - b, for some se- 
quence b,. Then evaluate the sum of the 
series C r =  1 /[n(n + I)]. 

36. An experiment is performed, during which time 
successive excursions of a deflected plate are 
recorded. Initially, the plate has amplitude bo. 
The plate then deflects downward to form a 
"dish" of depth b,, then a "dome" of height b2, 
and so on. (See Fig. 12.1.4.) The a's and b's are 
related by a ,  = bo - b,,a2 = b, - b2,a3 = b, - 
b3 . . . . The value an measures the amplitude 
"lost" at the nth oscillation (due to friction, say). 

Figure 11.1.4. The 
b2 deflecting plate in Exercise 36. 

21. Show that C z  *=,(I + 1 /2') diverges. 

22. Show that CzO(3 '  + 1/3') diverges. 

23. S u m 2 + 4 + + + $ + $ +  . . . .  
24. Sum I + 1/2 + 1/3 + 1/3'+ 1/33 + . - . . 

Test the series in Exercises 25-30 for convergence. 
(a) Find Cr' ,a,. Explain why bo - C r =  '=,a, is 

the "average height" of the oscillating plate 
after a large number of oscillations. 

(b) Suppose the "dishes" and "domes" decay to 
zero, that is, lim,,,b,+, = 0. Show that 
Cr= ,a, = bo, and explain why this is physi- 
cally obvious. 

37. The joining of the transcontinental railroads oc- 
curred as follows. The East and West crews were 
setting track 12 miles apart, the East crew work- 
ing at 5 miles per hour, the West crew working at 
7 miles per hour. The official with the Golden 
Spike travelled feverishly by carriage back and 
forth between the crews until the rails joined. His 
speed was 20 miles per hour, and he started from 
the East. 
(a) Assume the carriage reversed direction with 

no waiting time at each encounter with an 
East or West crew. Let tk be the carriage 
transit time for trip k. Verify that t,,,, 
- - , . n + i .  (12/13), and t2,+ = r n  - (12/27), 

where r = (13/27) . (15/25), n = 0, 1,2, 
3, . . .  . 

(b) Since the crews met in one hour, the total 

31. Show that the series C G ( 1  - 2-j)/j diverges. 
32. Show that the series f + f + $ + $ + . . . di- 

verges. 
33. Give an example to show that CT= ,(ai + bi) may 

converge while both C z  ,ai and 22 lbi diverge. 
34. Comment on the formula 1 + 2 + 4 + 8 + . . . 

= l / ( l  - 2 ) =  -1. 
35. A telescoping series, like a geometric series, can 

be summed. A series C r =  ,a, is telescoping if its 

time for the carriage travel was one hour, 
i.e., lim,,,(tl + t2 + t3 + t4 + . . - + t,) 
= 1. Verify this formula using a geometric 
series. 
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12.2 The Comparison Test 
and Alternating Series 
A series with positive terms converges if its terms approach zero quickly enough. 

Most series, unlike the geometric series, cannot be summed explicitly. If we 
can prove that a given series converges, we can approximate its sum to any 
desired accuracy by adding up enough terms. 

One way to tell whether a series converges or diverges is to compare it 
with a series which we already know to converge or diverge. As a fringe 
benefit of such a "comparison test," we sometimes get an estimate of the 
difference between the nth partial sum and the exact sum. Thus if we want to 
find the sum with a given accuracy, we know how many terms to take. 

The comparison test for series is similar to that for integrals (Section 
11.3). The test is simplest to understand for series with non-negative terms. 
Suppose that we are given series ET= lai and C?= ,bi such that 0 < a, < bi for 
all i: 

00 00 

if x b, converges, then so does 2 a, . 
i =  1 i =  l 

The reason for this is easy to see on an intuitive level. The partial sums 
Sn = CY,,a, are moving to the right on the real number line since ai > 0. 
They must either march off to co or approach a limit. (The proof of this 
sentence requires a careful study of the real numbers, but we will take it for 
granted here. Consult the Supplement to this section and the theoretical 
references listed in the Preface.) However, lai < CC= lbi < CT= lbi, since 
a, < b, and the partial sums ,bi are marching to the right toward their 
limit. Hence all the Sn7s are bounded by the fixed number CT= ,bi, and so they 
cannot go to co. 

Example I Show that x & converges. 
, = I  2'+4 

Solution We know that ET=*=,(3/2') is convergent since it is a geometric series with 
a = 3 a n d r = $  < 1; but 

so the given series converges by the comparison test. A 

For series CT= lai with terms that can be either positive or negative, we replace 
the condition 0 < ai < bi by la,J < b,. Then if CT=lbi converges, so must 
CT= "=,ail, by the test above. The following fact is true for any series: 

A careful proof of this fact is given at the end of this section; for now we 
simply observe that the convergence of ~F=",,a,l  implies that the absolute 
values la,l approach zero quickly, and the possibility of varying signs in the 
aiYs can only help in convergence. Therefore, if 0 < la,/ < b, and Cb, con- 
verges, then Cla,l converges, and therefore so does Cai. (We sometimes drop 
the "i = 1" and "co" from C if there is no danger of confusion.) This leads to 
the following test. 
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Let C?= ,ai and CT= ,bi be series such that la,/ < b,. If C?' ,bi is conver- 
gent, then so is CT= "=,,. 

" (- 11, 
Example 2 Show that 2 converges. 

; = I  13 

Solution We can compare the series with C?=11/3i. Let a, = (- l)'/(i3'+') and bi 
= 1/3'. Since i3'+ ' = (3i) .3' > 3', we have 

Therefore, since C?=*=,bi converges (it is a geometric series), so does C?= ,ai. .& 

If the terms of two series Ca i  and Cb, "resemble" one another, we may expect 
that one of the series converges if the other does. This is the case when the 
ratio ai/bi approaches a limit, as can be deduced from the comparison test. 
For instance, suppose that lim, +,(la,//b,) = M < oo, with all bi > 0. Then for 
large enough i, we have lai[/ b, < M + I, or /a,/ < (M + l)b,. Now if C bi 
converges, so does C ( M  + l)bi, by the constant multiple rule for series, and 
hence Ca, converges by the comparison test.' 

" 1 Example 3 Test for convergence: 2 - . 
i =  1 2' - i 

Solution We cannot compare directly with C?= 1/2', since 1/(2' - i) is greater than 
1/2'. Instead, we look at the ratios ai/bi with a, = 1/(2' - i) and bi = 1/2'. 
We have 

(lim, +,(i/2') = 0 by l'H6pital's rule). Since CT="=,1/2') converges, so does 
X?=l[1/(2i - 91. A 
The following tests can both be similarly justified using the original compari- 
son test. 

If (1) la,/ < bi for all i, or if limi+m(lail/bi) < ao and 
(2) C?= ,bi is convergent, then C?=*=,ai is convergent. 

If (I) a, >/ bi for all i, or if limi,,(ai/bi) > 0 and 
(2) C?= ,bi is divergent, then C?= pi is divergent. 

To choose bi in applying the ratio comparison test, you should look for the 
"dominant terms" in the expression for a,. 

' Strictly speaking, to apply the comparison test we should have lai/ < (M + l)bi for all i ,  not just 
sufficiently large i; but, as we saw earlier, the convergence or divergence of a series Ca,  is not 
affected by the values of its "early" terms, but only the behavior of ai for large i. Of course, the 
sum of the series depends on all the terms. 
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CO 

Example 4 Show that C - diverges 
i=  I 4 + i  

Solution As i -+ co, the dominant term in the denominator 4 + i is i, that is, if i is very 
large (like lo6), 4 is very small by comparison. Hence we are led to let 
a; = 2/(4 + i), bi = l/i .  Then 

a. 2/(4 + i) 
lim 1 = lim = lim - 2i - - lim 2 =-- -2.  

i j o o  bi i+m l / i  i + ~ 4 + i  ( i ) +  o + l  

Since 2 > 0, and C?="=,/i is divergent, it follows that CT="=,2/(4 + i)] is 
divergent as well. 

The next example illustrates how one may estimate the difference between a 
partial sum and the full series. We sometimes refer to this difference as a tail 
of the series; it is equal to the sum of all the terms not included in the partial 
sum. 

3 ( -  1); 
Example 5 Find the partial sum C _i+l (see Example 2) and estimate the difference 

i=1 13 
between this partial sum and the sum of the entire series. 

Solution The sum of the first three terms is 

The difference between the full sum of a series and the nth partial sum is given 
by CT= *=,ai - Z:= ,ai = CT="=,+ lai. To estimate this tail in our example, we 
write 

( s i n c e I C a i l < ~ l a i l )  " C  ,, 
i = 4  3 r 

(since i > 1) 

Thus the error is no more than 0.0062. We may therefore conclude that 
CT= ,[(- l)i/(3i+1i)] lies in the interval [-0.0967 - 0.0062, - 0.0967 + 0.00621 
= [ - 0.103, - 0.0901. A 

The second kind of series which we will treat in this section is called an 
alternating series. To illustrate, recall that we saw in Section 12.1 that the 
harmonic series 

l + + + + + $ + .  . - 
is divergent even though lim,,,(l/i) = 0. If we put a minus sign in front of 
every other term to obtain the series 

l - + + + - L +  . . .  
4 

we might hope that the alternating positive and negative terms "neutralize" 
one another and cause the series to converge. The alternating series test will 
indeed guarantee convergence. First we need the following definition. 
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A series Cy= ,ai is called alternating if the terms ai are alternately positive 
and negative and if the absolute values lai[ are decreasing to zero; that 

1. a I > 0 , a 2 < 0 , a 3 > 0 , a 4 < 0 , a n d s o o n ( o r a , < 0 , a 2 > 0  , . . .  ); 
2. (all > la21 > la31 > - . ; 

Conditions 1, 2, and 3 are often easy to verify. 

Example 6 Is the series 1 - 4 + 3 - + . . - alternating? 

Solution The terms alternate in sign, + - + - a . . , so condition 1 holds. Since the ith 
term ai = (- I)'+ '(l/i) has absolute value 1 /i, and l / i  > l/(i  + I), the terms 
are decreasing in absolute value, so condition 2 holds. Finally, since limi+mlail 
= limi,,(l /i) = 0, condition 3 holds. Thus the series is alternating. A 

- \ 
S = C ai is somewhere in here 

i=l 

Later in this section, we will prove that every alternating series converges. The 
proof is based on the idea that the partial sums Sn = C?= ,ai oscillate back and 
forth and get closer and closer together, so that they must close in on a 
limiting value S. This argument also shows that the sum S lies between any 
two successive partial sums, so that the tail corresponding to the partial sum 
Sn is less than lan+ 11, the size of the first omitted term. (See Fig. 12.2.1.) 

Figure 12.2.1. An alternat- 
ing series converges, no 
matter how slowly the 
terms approach zero. The 
sum lies between each two 
successive partial sums. 

1. If Cy= is a series such that the ai alternate in sign, are decreasing in 
absolute value, and tend to zero, then it converges. 

2. The error made in approximating the sum by S, = C',',,ai is not 
greater than 1 a, + 1. 

Example 7 Show that the series 1 - 4 + 5 - + + - . - converges, and find its sum 
with an error of no more than 0.04. 

Solution By Example 6, the series is alternating; therefore, by the alternating series test, 
it converges. To make the error at most 0.04 = A, we must add up all the 
terms through A. Using a calculator, we find 

(Since the sum lies between S2, and S,, = 0.7127, an even better estimate is 
the midpoint $(S2, + S,,) = 0.6927, which can differ from the sum by at most 
0.02.) A 
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Example 8 Test for convergence: 

(b) + -1 + 2  -1 + 2  -1 + 2  -1 + 2  -1 + . . . . 
2 3 3 4 4 5 5 6 6  

Solution (a) The terms alternate in sign since (-  1)' = 1 if i is even and (- 1)' = - 1 if i 
is odd. The absolute values, 1/(1 + i)2, are decreasing and converge to zero. 
Thus the series is alternating, so it converges. 
(b) The terms alternate in sign and tend to zero, but the absolute values are 
not monotonically decreasing. Thus the series is not an alternating one and 
the alternating series test does not apply. If we group the terms by twos, we 
find that the series becomes 

which diverges. (Notice that the nth partial sum of the "grouped" series is the 
2nth partial sum of the original series.) A 

We noted early in this section that a series C?=*=,a, always converges if its 
terms go to zero quickly enough so that the series C?="=,ail of absolute values 
is convergent. Such a series C?=*=,ai is said to be absolutely convergent. On the 
other hand, a series like 1 - $ + f - t + . . . , is convergent only due to the 
alternating signs of its terms; the series of absolute values, 1 + + f + , . . , is 
divergent (it is the harmonic series). When Cy=lai converges but C?=,/ail 
diverges, the series 2; *=,ai is said to be conditionally convergent. 

(-I),& 
Example 9 Discuss the convergence of the series 2 

i =  I ~ + 4  ' 

Solution Let a, = (- l)'fi/(i + 4). We notice that for i large, la,/ appears to behave like 
b, = 1 /&. The series C?= b, diverges by comparison with the harmonic series. 
To make the comparison between la,l and b, precise, look at the ratios: 
limi+,(lail/bi) = lim,+,[i/(i + 4)] = 1, so C?=*=,1ail diverges as well; hence 
our series is not absolutely convergent. 

The series does lo& like it could be alternating: the terms alternate in 
sign and lim,,,a, = 0. To see whether the absolute values lafl form a decreas- 
ing sequence, it is convenient to look at the function f(x) = &/(x + 4). The 
derivative is 

which is negative for x > 4, so f(x) is decreasing for x > 4. Since la,/ = f(i), 
we have la,l > la,] > la61 > . . . which implies that our series Ca,, with its 
first three terms omitted, is alternating. It follows that the series is convergent; 
since it is not absolutely convergent, it is conditionally convergent. g, 

A series C?= *=,ai is called absolutely convergent if C?= *=, 1 ail is convergent. 
Every absolutely convergent series converges. 
A series may converge without being absolutely convergent; such a 
series is called conditionally convergent. 
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Supplement to Section 12.2: 
A Discussion of the Proofs of the Comparison and 

a,  a2 a3 a4 as . . . Alternating Series Tests 
The key convergence property we need involves increasing sequences. It is 

(a) similar to the existence of lim,,, f(x) iff is increasing and bounded above, 
which we used in Section 11.3 to establish the comparison test for integrals. 

M A sequence a,,a2, . . . of real numbers is called increasing in case 
a,  < a, < . . . . The sequence is said to be bounded above if there is a number 
M such that an < M for all n. (See Fig. 12.2.2.) 

For example, let an = n/(n + 1). Let us show that an is increasing and is 
bounded above by M if M is any number > 1. To prove that it is increasing, 
we must show that an < an+ ,-that is, that 

No an's - 
above M < + l or n(n + 2) < (n + 1)2 

(b) n + 1  ( n + 1 ) + 1  
Figure 12.2.2. (a) An or 
increasing sequence; 
(b) a sequence bounded n 2 + 2 n <  n 2 + 2 n +  1 or O <  1. 
above by M. Reversing the steps gives a proof that an < an+,  ; i.e., the sequence is increas- 

ing. Since n < n + 1, we have an = n/(n + 1) < 1, so an < M if M > 1. 
We will accept without proof the following property of the real numbers 

(see the references listed in the Preface). 

If an is an increasing sequence which is bounded above, then an con- 
verges to some number a as n -+ m. (Similarly, a decreasing sequence 

The increasing sequence property expresses a simple idea: if the sequence is 
increasing, the numbers an increase, but they can never exceed M. What else 
could they do but converge? Of course, the limit a satisfies an < a for all n. 

For example, consider 

a ,  = 0.3, a, = 0.33, a, = 0.333 

and so forth. These an's are increasing (in fact, strictly increasing) and are 
bounded above by 0.4, so we know that they must converge. In fact, the 
increasing sequence property shows that any infinite decimal expansion con- 
verges and so represents a real number. 

To prove the comparison test for series with positive terms, we apply the 
increasing sequence property to the sequence of partial sums. If C?= ,ai is a 
series with ai >/ 0 for each i, then since the partial sums Sn satisfy Sn - Sn-, 
= an > 0, they must be an increasing sequence (see Fig. 12.2.3). If the partial 
sums are bounded above, the sequence must have a limit, and so the series 
must converge. 

Figure 12.23. The partial .-' T 

sums of the series CF= ]ai 
are increasing and bounded 
above by T. 
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Now we may simply repeat the argument presented earlier in this section. 
If 0 < a, < bi for all i, and T, = Cr= ,b,, then S, < T, . If the partial sums T, 
approach a limit T, then they are bounded above by T, and so S, < T for all 
n. Thus lim,,,S, exists and is less than or equal to T, i.e., C?= ,an < C?= 4,. 

To complete the proof of the general comparison test, we must show that 
whenever C ?= , 1 ail converges, so does C ?= ,a, ; in other words, every absolutely 
convergent series converges. Suppose, then, that Elail converges. 

We define two new series, C?= ,bi and C?= ,ci, by the formulas 

These are the "positive and negative parts" of the series Cy= ,ai. It is easy to 
check that ai = b, - c,. The series C?= ,bi and C?= ,ci are both convergent; in 
fact, since bi < la,l, we have C','=,b, < C?=,lail < CF=,lail, which is finite 
since we assumed the series C?=,ai to be absolutely convergent. Since b, > 0 
for all i, C??"=,, is convergent. The same argument proves that C?="=,i is 
convergent. The sum and constant multiple rules now apply to give the 
convergence of 2 ?= ,a, = C ?= , bi - C ?= , ci . 

Finally, we note that, by the triangle inequality, 

Since this is true for all n, and 

ai = Jim, ,x ai = lim C a, 1' i=  1 I I 1 n+Wli:l 1 
(the absolute value function is continuous), it follows that (C?= "=,,I < C?= ,lai[. 
(Here we again used the fact that if b, < M for all n and b, converges to b, 
then b < M). 

We conclude this section with a proof that every alternating series converges. 

Let C?= "=,, be an alternating series. If we let bi = (- l)'+'ai, then all the bi 
are positive, and our series is b, - b, + b, - b, + b, . . . In addition, we have 
b, > b, > b, > - . , and lim,,,b, = 0. Each even partial sum S,, can be 
grouped as (b, - b,) + (b, - b,) + . - + (b,-, - b,), which is a series of 
positive terms, so we have S, < S, < S, < . - . . On the other hand, the odd 
partial sums S,,, , can be grouped as b, - (b, - b,) - (b, - b,) - . . . - 
(b,, - b,,,,), which is a sum of negative terms (except for the first), so we 
have S, > S3 > S5 > . - . . Next, we note that S,,, , = S,, + b2,+ , > S,, . 
Thus the even partial sums S,, form an increasing sequence which is bounded 
above by any member of the decreasing sequence of odd partial sums. (See 
Fig. 12.2.1 .) By the increasing sequence property, the sequence S,, approaches 
a limit, Seven. Similarly, the decreasing sequence S,,, , approaches a limit, 
Sodd  . 

Thus we have S, < S, < S, < . . . S,, < - . < Seven < Sod, . - . < 
S,,, , < . . . < S3 < S, . Now S2,+ , - S,, is a2,+ , , which approaches zero as 
n + co ; the difference Sod, - Seven is less than S,, + , - S,, , so it must be zero; 
i.e., Sod, = Seven. Call this common value S. Thus IS,, - SI < IS,, - S,,, ,I 
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= b2n+l = Ia2n+1I and I S Z ~ + I  - SI Is2n+1 - S2n+2I = b2n+2 = Ia2n+217 
each difference I Sn - S I is less than lan+ 1. Since a n +  + 0, we must have 
Sn+S as n + m .  

This argument also shows that each tail of an alternating series is no 
greater than the first term omitted from the partial sum. 

Exercises for Section 12.2 
Show that the series in Exercises 1-8 converge, using 

1 1 1 1  1 1 33. - + - + - + - + - + - + . - .  
3 5 9 17 33 65 

+ 
the comparison test for series with positive terms. 1 

1 1 1  1 34. I + -  + -  + -  + . . .  +- + . . .  
3 7 15 2" - 1 

8 Find the sum of the series in Exercises 35-38 with an 
error of no more than 0.01. 

- - 

" k  co 
36. C [Hint: Compare with C 

k=O 2 k=O 
(f )*.I M sin i cos(ai) 

7. C7 8. - 
i=1 2 - 1 i=1 3 '-1 

Show that the series in Exercises 9-12 diverge, by using 
the comparison test. 

Test the series in Exercises 39-50 for convergence and 
absolute convergence. 

Test the series in Exercises 13-34 for convergence. 

w cos ai " (-1)" 43. - 44. C - 
i = ~  2' 8n + 2 

47. (- 1y -.!..- 
i= I i 2 +  1 

48. C z l a i ,  where a, = 1/(2') if i is even and ai 
= I / i  if i is odd. 

49. C:='=,(- I)"ln[(n + l)/n]. [Hint: First prove that 
In(1 + a) > a /2  for small a > 0.1 

50. C:='=,(- l)"+'ln[(n + 3)/n]. (See the hint in 49.) 

Estimate the sum of the series in Exercises 51-54 with 
an error of no more than that specified. 

" sin j 
29. C - 30. 

j=1 2' " 1 31. C - 32. 
i=2  Ini 
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55. Test for convergence: 4 + t - $ - h + 2 + 
- $  -' + . . . 

56. Does the series t + + - - f + + f - . - 
converge? 

Exercises 57 and 58 deal with an application of the 
increasing sequence test to inductively defined se- 
quences. For example, let a, be defined as follows: 

and, in general, a, = J3 + a,-, . If we attempt to write 
out a, "explicitly," we quickly find ourselves in a nota- 
tional nightmare. However, numerical computation sug- 
gests that the sequence may be convergent: 

a, = 2.3027 1 a, = 2.30276 a, = 2.30277 

a lo  = 2.30278 a , ,  = 2.30278 a,, = 2.30278 . . . 

The sequence appears to be converging to a number 
lm2.30278 . . . , but the numerical evidence only sug- 
gests that the sequence converges. The increasing se- 
quence test enables us to prove this. 
- 57. Let the sequence anebe defined inductively by the 

rules a. = 0, a, = JG. 
(a) Write out a , ,  a,, and a, in terms of square 

roots. 
(b) Calculate a ,  through a,, and guess the value 

of lim,,,a, to four significant figures. 
*58. (a) Prove by induction on n that for the se- 

quence in Exercise 57, we have a, > a,-, 
and a, < 5. 

(b) Conclude that the limit I = lim,,,a, exists. 
(c) Show that I must satisfy the equation 

1 = m .  
(d) Solve the equation in (c) for I and evaluate I 

to four significant figures. Compare the re- 
sult with Exercise 57(b). 

Show that the sequences in Exercises 59-62 are increas- 
ing (or decreasing) and bounded above (or below). 

*63. Let B > 0 and a. = 1; a,+, = $(a, + B/a,). 
Show that a, +@. 

*64. Let a,,, = 3 - (l/a,); a. = 1. Prove that the se- 
quence is increasing and bounded above. What is 
lim,,,a,? 

*65. Let a , + , = f a , + & ;  a o =  1. Prove that a, is in- 
creasing and bounded above. What is lim,,,a,? 

*66. Let a,, , = $ (1 + a,), and a. = 1. Show that 
limn+,an = 1. 

*67. Give an alternative proof that limn,,rn = 0 if 
0 < r < 1 as follows. Show that r n  decreases and 
is bounded below by zero. If the limit is I, show 
that rl = I and conclude that I = 0. Why does the 
limit exist? 

*68. Suppose that a. = 1, a,+, = 1 + 1/(1 + a,). Show 
that a, converges and find the limit. 

*69. The celebrated example due to Karl Weierstrass 
of a nowhere differentiable continuous function f(x) 
in - oo < x < oo is given by 

where +(x + 2) = +(x), and +(x) on 0 < x < 2 is 
the "triangle" through (0, O), (1, I), (2,O). By con- 
struction, 0 < +(4"x) < 1. Verify by means of the 
comparison test that the series converges for any 
value of x. [See Counterexamples in AnaIysis by 
B. R. Gelbaum and J. M. H. Olmsted, Holden- 
Day, San Francisco (1964), p. 38 for the proof 
that f is nowhere differentiable.] 

*70. Prove that a, = (1 + l/n)" is increasing and 
bounded above as follows: 
(a) If 0 < a < b, prove that 

bfl+ 1 - 1 
<(n + l )bn.  

b - a  

That is, prove bn[(n + 1)a - nb] < a n + ' .  
(b) Let a = 1 + [l/(n + l)] and b = 1 + ( l /n)  

and deduce that a, is increasing. 
(c) Let a = 1 and b = 1 + (1/2n) and deduce 

that (1 + 1/2n)2" < 4. 
(d) Use parts (b) and (c) to show that a, < 4. 
Conclude that a, converges to some number (the 
number is e-see Section 6.3). 
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Figure 12.3.1. The area 
under the graph o f f  is less 
than the shaded area, so 
0 G J;+'f(x)dx G C:=,a,. 

The Integral and 
Ratio Tests 
The integral test establishes a connection between infinite series and improper 
integrals. 

The sum of any infinite series may be thought of as an improper integral. 
Namely, given a series C?= ,a,, we define a step function g(x) on [I, co) by the 
formulas: 

g(x) = a ,  (1 < x < 2) 

g ( x ) = a ,  ( 2 < x < 3 )  

Since fif 'g(x) dx = a,, the partial sum z;=, ai is equal to fi+ lg(x) dx, and the 
sum C?=*=,a, = lirn,+,C?=,ai exists if and only if the integral J;"g(x)dx 
= lim,,,J: g(x) dx does. 

By itself, this relation between series and integrals is not very useful. 
However, suppose now, as is often the case, that the formula which defines the 
term a; as a function of i makes sense when i is a real number, not just an 
integer. In other words, suppose that there is a function f(x), defined for all x 
satisfying 1 < x < co, such that f(i) = a; when i = 1,2,3, . . . . Suppose fur- 
ther that f satisfies these conditions: 

1. f(x) > 0 for all x in [l, co); 
2. f(x) is decreasing on [l,  co). 

For example, if ai = l / i ,  the harmonic series, we may take f(x) = l /x .  
We may now compare f(x) with the step function g(x). When x satisfies 

i < x < i + 1, we have 

0 < f(x) < f ( i )=  a, = g(x). 

Hence 0 < f(x) < g(x). (See Fig. 12.3.1 .) 

It follows that, for any n, 

o < I ; n + l f ( x ) d x < I ; n + ' g ( x ) d x =  5 a,. 
i =  1 

We conclude that if the series C?= "=,i converges, then the integrals 'f(x) dx 
are bounded above by the sum z?=fli, so that the improper integral 
J;"f (x) dx converges (see Section 1 1.3). 

In other words, if the integral J;"f(x)dx diverges, then so does the series 
C?=,a,. 
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Example 1 Show that 

and so obtain a new proof that the harmonic series diverges. 

Solution We take our function f(x) to be l /x.  Then, from formula (1) above, we get 

Since lim,,,ln(n + 1) = m, the integral l;"(l/x)dx diverges; hence the series 
C ?= ,(l / i) diverges, too. g, 

We would like to turn around the preceding argument to show that if 
l;"f(x)dx converges, then C?=,a, converges as well. To do so, we draw the 
rectangles with height a; to the left of x = i rather than the right; see Fig. 
12.3.2. This procedure defines a step function h(x) on [I, m) defined by 

h(x)=a,+,  ( i < x < i + l ) .  

Now we have Jj+'h(x)dx = a,+,, so C:=2a, = J;h(x)dx. If x satisfies i < x 
< i + 1, we have 

f(x) > f ( i +  1 )=  a,+, = h(x) > 0. 

Hence f(x) > h(x) > 0. (See Fig. 12.3.2.) Thus 

Figure 123.2. The area 
under the graph of 
f is greater than the 
shaded area, so 
0 < C;=,a; < J; f ( x )  dx. X 

If the integral J;"f(x)dx converges, then the partial sums C',',,a, = a ,  + 
C:,,a, are bounded above by a ,  + l;"f(x)dx, and therefore the series C?= ,a, 
is convergent (see the Supplement to Section 12.2). 

m 

To test the convergence of a series x a; of positive decreasing terms, 
i= 1 

find a positive, decreasing function f(x) on [I, co) such that f(i) = a;. 
m 

lf,Jmf(x) dx converges, so does 2 a,. 
i =  l 

m 

If J m  f (x) dx diverges, so does x a;. 
i =  I 

Example 2 Show that 1 + $ + $ + & + . - - converges. 

Solution This series is C?= ,(l/i2). We let f(x) = 1/x2; then 

The indefinite integral converges, so the series does, too. A 
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00 00 

diverges, but C Example 3 Show that --- I converges. 
m=2 m&Gi m=2 m(1nm) 

Solution Note that the series start at m = 2 rather than m = 1. We consider the integral 

= lim 
b+cc - p +  1 

The limit is finite if p = 2 and infinite if p = 4, so the integral converges if 
p = 2 and diverges if p = f. It follows that ~ ; = ~ [ l / ( m f i ) ]  diverges and 
2 = 2[1 / m (ln m)2] converges. A 

Examples 1 and 2 are special cases of a result called the p-series test, which 
arises from the integral test with f(x) = l/xP. We recall that J;"xndx con- 
verges if n < - 1 and diverges if n > - 1 (see Example 2, Section 11.3). Thus 
we arrive at the test in the following box. 

The p-series are often useful in conjunction with the comparison test. 

Example 4 Test for convergence: 

Solution (a) We compare the given series with the convergent p series C?=*=,l/i2. Let 
a, = 1 /(1 + i2) and bi = 1 / i2. Then 0 < a, < b, and Cy= b, converges, so 
C?=, ai does, too. 
(b) Let aj = ( j2  + 2j)/(j4 - 3j2 + lo) and bj = j2/j4 = l/j2. Then 

Since C > b  converges, so does CT=,a,, by the ratio comparison test. 

(c) Take a,, = (3n +6) / (2n3l2  + 2) and b,, = = 1 / 6 .  Then 

lim 
3 + ( l / C )  3 - - - 

n + w 2 + ( 2 / n 3 / 2 )  2 '  

Since 2 := b,, diverges, so does := '=,an. 
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What is the error in approximating ap-series by a partial sum? Let us show 
that c:= ,(l/  np) approximates C:= ,(l/  nP) with error which does not exceed 
I/[(p - 1)Np-'I. 

Indeed, just as in the proof of formula (2), we have 

The left-hand side is the error: 

Thus, error < 1 
(P - I)NP-I ' 

1 Example 5 It is known that Cr= l ( l /n2 )  = 7r2/6. Use this equation2 to calculate n2/6 
with error less than 0.05. 

Solution By equation (3), the error in stopping at N terms is at most 1/N. To have 
error < 0.05 = $, we must take 20 terms (note that 100 terms are needed to 
get two decimal places!). We find: 

1 = 1, 
1 + 4 = 1.25, 

1 + a + + =  1.36, 

1 + a + $ + & =  1.42, 

1 + a + $ + & + & =  1.46, 

and so forth, obtaining 1.49, 1.51, 1.53, 1.54, 1.55, 1.56, . . . . Finally, 
1 + + . . + & = 1.596 . . . . (Notice the "slowness" of the convergence.) 
We may compare this with the exact value n2/6 = 1.6449 . . . . A 
The idea used in the preceding example can be used to estimate the tail of a 
series whenever convergence is proven by the integral test. (See Exercise 11.) 

Another important test for convergence is called the ratio test. This test 
provides a general way to compare a series with a geometric series, but it 
formulates the hypotheses in a way which is particularly convenient, since no 
explicit comparison is needed. Here is the test. 

For a proof using only elementary calculus, see Y. Matsuoka, "An Elementary Proof of the 
Formula C;P=, l / k2  = a2/6," American Mathematical Monthly 68(1961): 485-487 (reprinted in 
T. M. Apostol (ed.), Selected Papers on Calculus, Math. Assn. of America (1969), p. 372). The 
formula may also be proved using Fourier series; see for instance J. Marsden, Elementary 
Classical Analysis, Freeman (1974), Ch. 10. 
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Do not confuse this test, in which ratios of successive terms in the same series 
are considered, with the ratio comparison test in Section 12.2, where we took 
the ratios of terms in two different series. 

Proof of By definition of the limit, lai/ai-,l will be close to its limit 1 for i large. To 
the ratio prove part 1, let I < 1 and let r = (I + 1)/2 be the midpoint between I and 1, 

test so that 1 < r < 1. Thus there is an N such that 

We will show this implies that the given series converges. 
We have laN+l /aNl  < l aN+ l l  < laNlr, 1aN+2/aN+11 < r; hence laN,+21 

< laN+,lr < laNlr2 and, in general, JaN+,l < laNlrJ; but CT=llaNJrJ = 
laNIZT= is a convergent geometric series since r < 1. Hence, by the compar- 
ison test, CiM=,laN+jl converges. Since we have omitted only l a l [ ,  
la21, . . . , laN/, the series Ci",,lajl converges as well and part 1 is proved. 

For part 2 we find, as in part 1, that laN+,l > laNlrj, where r = (1 + 1)/2 
is now greater than 1. As j -+ co, r j  -+ co, so laN+jl + co . Thus the series 
cannot converge, since its terms do not converge to zero. 

To prove part 3, we consider the p-series with ai = iP. The ratio is 
lai/ai-ll = [i/(i - l)]P, and limi,,[i/(i - 1)]P = [limi+,(i/(i - l))]P = 1P 
= 1 for all p > 0; but the p-series is convergent if p > 1 and divergent if p < 1, 
so the ratio test does not give any useful information for these series. II 

22 23 24 1 8 1 Example 6 Test for convergence: 2 + - + - + - + . - . = 2 + - + - + - 
28 38 48 64 6561 4096 

Solution We have ai = 2'/i8. The ratio ai/ai-, is 

ai 8 i - 1  lim - = 2  llm - = 2 . 1 8 = 2  
i+w ai- [ i  i ) ]  

which is greater than 1, and so the series diverges. A 

Example 7 Test for convergence: 

1 (a) C:=l--i., wheren!= n(n- 1 ) . . . 3 . 2 .  1 
n. 
bJ (b) 2% T, b any constant 
J -  

Solution (a) Here a, = l/n!, so 
l / n ( n -  1 ) - a . 3 - 2 . 1  

an - -- - 1 - - 
an- I l / ( n - l ) ( n - 2 ) . . - 3 . 2 - 1  n '  

Thus lan/an - , I  = 1 /n -+ 0 < 1, so we have convergence. 
(b) Here aj = bj/j!, so 

aj - -- bJ/j! - b - - 
aj-I b - 1 )  j ' 

Thus /aj/aj-,/ = b/j+O, so we have convergence. In this example, note that 
the numerator bJ and the denominator j! tend to infinity, but the denominator 
does so much faster. In fact, since the series converges, bJ/j!-+O as j+ co. A 
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Let us show that if (an/an-,( < r < 1 for n > N, then the error made in 
approximating C:=,an by C:= ,an is no greater than laNlr/(l - r). In short, 

laNlr error < - . 
I - r  

Indeed, C:= ,an - C:, ,a,, = C;=N+ ,a,,. As in the proof of the ratio test, 
laN+,/ < laN(r, and, in general, < laNlrj, so C%1aN+ < laNlr/(l - r) 
by the formula for the sum of a geometric series and the comparison test. 
Hence the error is no greater than laNlr/(l - r). 

" 1 
4 

1 Example 8 What is the error made in approximating 2 --i- by 2 ? 
f l = l  n. , ,=I n. 

Solution Here (an/an- , (  = l/n, which is < f if n > 4 = N. By inequality (4), the error 
is no more than a,/5(1 - 1 /5) = 1 /4 - 4! = 1 /96 < 0.0105. The error becomes 
small very quickly if N is increased. A 

Our final test is similar in spirit to the ratio test, in that it is also proved by 
comparison with a geometric series. 

To prove 1, let I = lirnn,,(lanl1/") and let r = (1 + 1)/2 be the midpoint of 1 
and I, so I < r < 1. From the definition of the limit, there is an N such that 
lanll/" < r < 1 if n > N. Hence lan[ < r n  if n > N. Thus, by direct comparison 
of C?= 1 an 1 with the geometric series 2 r ", which converges since 
r < 1, C;='=,+ ,lanl converges. Since we have neglected only finitely many 
terms, the given series converges. 

Cases 2 and 3 are left as exercises (see Exercises 37 and 38). 

" 1 " 3" Example 9 Test for convergence: (a) 2 2 and (b) 2 7 . 
n= 1 , ,= I  n 

Solution (a) Here an = I /nn,  so lanl'/n = l/n. Thus lirnn,,lanl'/" = 0 < 1. Thus, by 
the root test (with i replaced by n), the series converges (absolutely). [This 
example can also be done by the comparison test: l/nn < l/n2 for n 2 2.1 
(b) Here an = 3"/n2, so lanll/" = 3/n2/"; but limn,,n2/" = 1, since ln(n2/") 
= 2(ln n)/n + 0 as n -+ oo (by l'H6pital's rule). Thus limn,, lan] I/" = 3 > 1, so 
the series diverges. d, 

The tests we have covered enable us to deal with a wide variety of series. Of 
course, if the series is geometric, it may be summed. Otherwise, either the ratio 
test, the root test, comparison with a p-series, the integral test, or the alternat- 
ing series test will usually work. 
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m 
* 1 Example l O  Test for convergence: (a) x 5 and  (b) x 

n=l  n -  n=t n 2 - I n n '  
Solullon (a) W e  use the ratio test. Here, an = nn/n!, so 

The numerator approaches 1 while the denominator approaches e- '  (see 
Section 6.4), so limn,,lan/an- , I  = e > 1, and  the series diverges. 
(b) W e  expect the series to behave like C:='=,(l/n2), so we use the ratio 
comparison test, with a, = l /( i2 - lni)  and  b, = l/i2. The ratio between the 
terms in the two series is 

Since lim, +,[(lni)/i2] = 0 (by l'H6pital's rule), limi+,ai/bi = 1. The p-series 
2 ?= bi = 2 ?= 1(1 / i2) converges, so the series 

00 00 

converges, too. A C a,= C - 
i=1 i=1 i2 - l n i  

Exercises for Section 12.3 
Use the integral test to determine the convergence or 
divergence of the series in Exercises 1-4. 

Estimate the sums in Exercises 17 and 18 to within 0.05. 

4. 1 
i = 2 i (ln i)2/3 

a19. Estimate C;='=,(l/n!): (a) To within 0.05. 
(b) To within 0.005. (c) How many terms would 
you need to calculate to get an accuracy of five 
decimal places? 

Use the p-series test and a comparison test to test the 
series in Exercises 5-8 for convergence or divergence. 

sin(m/2) 
120. (a) Show that C converges. 

n = l  n! 

w sin n 6. C - 
n= 1 n312 

(b) Estimate the sum to within 0.01. 
Use the root test to determine the convergence or 
divergence of the series in Exercises 2 1-24. 

Estimate the sums in Exercises 9 and 10 to within 0.05. 

11. Let f(x) be a positive decreasing function on 
[I, oo) such that jpDf(x)dx converges. Show that 

Test for convergence in Exercises 25-36. 

12. Estimate CF=l[(l + n2)/(1 + n8)] to within 0.02. 
(Use the comparison test and the integral test.) 

Use the ratio test to determine the convergence or 
divergence of the series in Exercises 13-16. 

m cos k~ 29. C - 
,=, Ink 
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m 
s - lns 34. 2 --- 

s= l  s2 + Ins 
(-1)I 

36. 2 - 
t=I t1/4 

In Exercises 37 and 38, complete the proof of the root 
test by showing the following. 
*37. If limn,,lanll/" > 1, then Cr= '=,an diverges. 
*38. If limn,,lanll/" = 1, the test is inconclusive. (You 

may use the fact that limn,,ni/" = 1.) 

*39. For which values of p does C z  "=,[sn(l/i)]P con- 
verge? 

*40. For which vaiues of p does CF=2[l/n(lnn)P] con- 
verge? 

*41. For which p does C2=2(l /npln n) converge? 
*42. For which values of p and q is the series 

2 ?= 2l  /[nP(ln n)q] convergent? 
*43. (a) Let f(x) be positive and decreasing on [l ,  m), 

and suppose that f(i) = ai for i = 1,2,3, . . . . 
Show that 

where 

[Hint: Look at the proof of the integral test; show 
that J,",I f(x)dx < C E n + l a i  < J:f(x)dx.] 

a (b) Estimate Zr= 1 / n4 to within 0.0001. How 
many terms did you use? How much work do you 
save by using the method of part (a) instead of the 
formula: error < 1 / ( p  - 1)NPp1? 

*44. Using Fourier analysis, it is possible to show that 

(a) Show directly that the series on the right is 
convergent, by means of the integral test. 

(b) Determine how many terms are needed to 
compute a4/96 accurate to 20 digits. 

*45. A bar of length L is loaded by a weight W at its 
midpoint. At t = 0 the load is removed. The de- 
flection y(t) at the midpoint, measured from the 
straight profile y = 0, is given by 

where r = ( $ \is ) The numbers E, I, g, 

y, 9, L are positive constants. 
(a) Show by substitution that the bracketed 

terms are the first three terms of the infinite 
series 

(b) Make accurate graphs of the first three par- 
tial sums 

Sl(r)  = cos(r), 

Up to a magnification factor, these graphs 
approximate the motion of the midpoint of 
the bar. 

(c) Using the integral test and the comparison 
test, show that the series converges. 

12.4 Power Serles 
Many functions can be expressed as bbpolynomials with infinitely many terms." 

A series of the form C7=,ai(x - x,)', where the ai's and x, are constants and x 
is a variable, is called a power series (since we are summing the powers of 
(x - x,)). In this section, we show how a power series may be considered as a 
function of x, defined on a certain interval. In the next section, we begin with 
an arbitrary function and show how to find the power series which represents 
it (if there is such a series). 

We first consider power series in which x, = 0; that is, those of the form 
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serles converges ~f 
x IS In t h ~ s  ~nterval Se"es *lverges 

Figure 12.4.1. R is the 
radius of convergence of 
CZoa,x1. 

where the ai are given constants. The domain off can be taken to consist of 
those x for which the series converges. 

If there is an integer N such that ai = 0 for all i > N, then the power 
series is equal to a finite sum, Cy'oaixi, which is just a polynomial of degree 
N. In general, we may think of a power series as a polynomial of "infinite 
degree"; we will see that as long as they converge, power series may be 
manipulated (added, subtracted, multiplied, divided, differentiated) just like 
ordinary polynomials. 

The simplest power series, after a polynomial, is the geometric series 

which converges when 1x1 < 1 ; the sum is the function 1/(1 - x). Thus we 
have written 1/(1 - x) as a power series: 

Convergence of general power series may often be determined by a test 
similar to the ratio test. 

exists. Let R = 1/1; if I = 0, let R = co, and if 1 = co, let R = 0. Then: 

1. If 1x1 < R, the power series converges absolutely. 

To prove part 1, we use the ratio test for series of numbers; the ratio of 
m 

successive terms for 2 aixi is 
i=O 

By hypothesis, this converges to I 1x1 < I - R = 1. Hence, by the ratio test, the 
series converges absolutely when 1x1 < R. The proof of part 2 is similar, and 
the examples below will show that at x = + R, either convergence or diver- 
gence can occur. 

The number R in this test is called the radius of convergence of the series 
(see Fig. 12.4.1). One can show that a number R (possibly infinity) with the 
three properties in the preceding box exists for any power series, even if 
limi,,(ai/ai- , (  does not exist. 
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m .  
Example 1 For which x does x -L x ' converge? 

i=, i + 1 

Solution Here ai = i/(i + 1). Then 

Hence I  = 1. Thus the series converges if 1x1 < 1 and diverges if 1x1 > 1. If 
x = 1, then limi+m[i/(i + l)]xl = 1, so the series diverges at x = 1 since the 
terms do not go to zero. If x = - 1, lim,,,l[i/(i + l)]xil = limijm[i/(i + l)] 
= 1, so again the series diverges. a 

m 
Example 2 Determine the radius of convergence of 2 k5 X k  

k=O (k + I)! 
Solution To use the ratio test, we look at 

Here ak = k5/(k + l)!, so 

1  = lim 
k - + ~  (k + l)! (k - 115 I k5 . 

Thus 1 = 0, so R = co and the radius of convergence is infinite (that is, the 
series converges for all x). A 

Example 3 For which x do the following series converge? (a) 2 5 (b) 3 i = l  1 i = l  I 
0 0 :  

(c) x 5 (By convention, we define O! = 1 .) 
i = O  1 .  

Solution (a) We have ai = l/i ,  so 

the series therefore converges for 1x1 < 1 and diverges for 1x1 > 1. When 
x = 1, Cy? ,x i / i  is the divergent harmonic series; for x = - 1, the series is 
alternating, so it converges. 
(b) We have ai = 1 /i2, SO 

(i - I ) ~  
I =  lim - = 

i+w i2 
1 

and the radius of convergence is again 1. This time, when x = 1, we get the 
p-series Cy=l(l/i2), which converges since p = 2 > 1. The series for x = - 1, 

l)r/i2], converges absolutely, so is also convergent. 
(c) Here ai = l/i!, so lai/ai-,l = (i - l)!/i! = l/i+O as i+  co. Thus I  = 0, 
so the series converges for all x. A 
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Series of the form C?=,ai(x - x,)' are also called power series; their theory is 
essentially the same as for the case xo = 0 already studied, because 
C?=,ai(x - x,)' may be written as C?=,aiwl, where w = x - x,. 

00 

Example 4 For which x does the series 4n (x + 5)" converge? 
n=o J2n+5 

Solution This series is of the form C?=,a,(x - x,)', with a, = &/dm and x, = - 5. 
We have 

ai 4' &i - 1) + 5 
- lim - . I =  lim - - 

i+m a;-l i+m 4i- I 

so the radius of convergence is a. Thus the series converges for I x + 5 1 < a 
and diverges for 1x + 51 > a. When x = - 5 a, the series becomes 
C?=,[(- I)'/ J2i + 5 1, which converges because it is alternating. When 
x = - 4!, the series is C?=,[l / d m ] ,  which diverges by the ratio compari- 

son test with ~ ? = * = , ( l / f i )  (or by the integral test). Thus our power series 
converges when -5; < x < - 4 t .  A 

In place of the ratio test, one can sometimes use the root test in the same way. 

Then the radius of convergence is R = lip. 

Indeed, if 1x1 < R, limi+m(aixi('/i = limi+,laill/'lxl = plxl < pR = 1 ,  so the 
power series converges by the root test. 

00 

Example 5 Find the radius of convergence of the series s x i  
i=l (2 + l/i)j ' 

Solution p = limi+,la,ll/' = lim,+,(l/(2 + l/i>')'/' = limi+,{1/[2 + (l/i)]) = t , SO 

the radius of convergence is R = 2. A 

Let f (x) = C ?= ,six ', defined where the series converges. By analogy with 
ordinary polynomials, we might guess that 

and that 

In fact, this is true. The proof is contained in (the moderately difficult) 
Exercises 41-45 at the end of the section. 

00 

Example 6 If f(x) = 2 < , show that f ' (x)  = f(x). Conclude that f(x) = ex .  
n -0  n. 

Solution By Example 3(c), the series for f(x) converges for all x. Then f'(x) 
= C7=,(ixi-'/i!) = C7="=,xi-'/(i - I)!] = C?=,(xi/i!) = f(x). By the 
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uniqueness of the solution of the differential equation f'(x) = f(x) (see Section 
8.2), f(x) must be cex for some c. Since f(0) = 1, c must be 1, and so 
f(x) = ex. A 

To differentiate or integrate a power series within its radius of conver- 
gence R, differentiate or integrate it term by term: if Ix - xol < R, 

00 

Example 7 Let f(x) = x - xi. Find a series expression for f'(x). Where is it valid? 
i = O  i +  1 

Solution By Example l,f(x) converges for 1x1 < 1. Thusf'(x) also converges if 1x1 < 1, 
and we may differentiate term by term: 

CC 
i2 

f'(x) = iTo ;TT , 1x1 < I (this series diverges at x = i 1) 

(Notice that f'(x) is again a power series, so it too can be differentiated. 
Since this can be repeated, we conclude that f can be differentiated as many 
times as we please. We say that f is infinitely differentiable.) A 

Example 8 Write down power series for x/(l + x2) and ln(1 + x2). Where do they 
converge? 

Solution First, we expand 1/(1 + x2) as a geometric series using the general formula 
1/(1 - r) = 1 + r + r2 + , with r replaced by - x2, obtaining 1 - x2 + 
x4 - . . - . Multiplying by x gives x/(l + x2) = x - x3 + x5 - - - , which 
converges for 1x1 < 1. (It diverges for x = + 1 .) 

Now we observe that (d/dx)ln(l + x2) = 2x/(1 + x2), so 

(The integration constant was dropped because ln(1 + 02) = 0.) This series 
converges for 1x1 < 1, and also for x = + 1, because there it is alternating. A 

The operations of addition and multiplication by a constant may be per- 
formed term by term on power series, just as on polynomials. This may be 
proved using the limit theorems. The operations of multiplication and division 
proceed by the same methods one uses for polynomials, but are more subtle to 
justify. We state the results in the following box. 
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If T is the smaller of R and S,  then 

f(x) + g(x) = t: (ai + bi)xi for 1x1 < T; 

Example 9 Write down power series of the form C?=*=,aixi for 2/(3 - x), 5/(4 - x), and 
(23 - 7x)/[(3 - x)(4 - x)]. What are their radii of convergence? 

Solution We may write 

The ratio of successive coefficients is (1/3'+')/(1/3') = 1/3, so the radius of 
convergence is 3. 

Similarly, 

with radius of convergence 4. Finally, we may use partial fractions (Section 
10.2) to write (23 - 7x)/[(3 - x)(4 - x)] = 2/(3 - x) + 5/(4 - x), so we have 

By the preceding box, the radius of convergence of .this series is at least 3. In 
fact, a limit computation shows that the ratio of successive coefficients 
approaches 3, so the radius of convergence is exactly 3. A 

In practice, we do not use the formula for f(x)g(x) in the box above, but 
merely multiply the series for f and g term by term; in the product, we collect 
the terms involving each power of x. 

Example 10 Write down the terms through x4 in the series for eX/(l - x). 

Solution We have e x  = 1 + x + x2/2 + x3/6 + x4/24 + . - . (from Example 6) and 
1/(1 - x) = 1 + x + x2 + x3 + x4 + - . - . We multiply terms in the first se- 
ries by terms in the second series, in all possible ways. 
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(Since we want the product series only through x4, we may neglect the terms 
in higher powers of x.) Reading along diagonals from lower left to upper right, 
we collect the powers of x to get 

Exercises for Seetian 12.4 
For which x do the series in Exercises 1-10 converge? Use the root test to determine the radius of convergence 

Find the radius of convergence of the series in Exercises 
11-14. 

Find the radius of convergence R of the series 
C~=,,anxn in Exercises 15-18 for the given choices of 
a,, . Discuss convergence at + R. 

15. a,, = I/(n + 1)" 16. an = (- l)"/(n + 1) 
17. an = (n2 + n3)/(1 + n)5 18. an = n 

of the series in Exercises 19-22. 

23. Let f(x) = x - x3/3! + x5/5! - - . . . Show that 
f is defined and is differentiable for all x. Show 
that f"(x) + f(x) = 0. Use the uniqueness of so- 
lutions of this equation (Section 8.1) to show that 
f(x) = sin x. 

24. By differentiating the result of Exercise 23, find a 
series representation for cosx. 

25. Let f(x) = C?=*=,(i + l)xi. 
(a) Find the radius of convergence of this series. 
(b) Find the series for JG f(t) dt. 
(c) Use the result of part (b) to sum the series 

f ( 4 .  
(d) Sum the series g + $ + + + +, + . - . 

26. (a) Write a power series representing the integral 
of 1/(1 - x) for 1x1 < 1. (b) Write a power series 
for lnx = J(dx/x) in powers of 1 - x. Where is 
it valid? 

Write power series representations for the functions in 
Exercises 27-30. 

27. ePx2. (Use Example 6.) 
28. (d/dx)e-"* 
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29. tan-lx and its derivative. [Hint: Do the deriva- 
tive first.] 

30. The second derivative o f  1 / ( 1  - x). 

31. Find the series for 1 / [ ( 1  - x)(2 - x)] by writing 

and adding the resulting geometric series. 
32. Find the series for x / ( x 2  - 4x  + 3). (See Exer- 

cise 31). 
33. Using the result o f  Exercise 23, write the terms 

through x6 in a power series expansion o f  sin2x. 
34. Find the terms through x6 in the series for 

sin3x/x. 
35. Find series f ( x )  and g (x )  such that the series 

f ( x )  + g(x)  is not identically zero but has a 
larger radius o f  convergence than either f ( x )  or 
g(x>. 

36. Find series f ( x )  and g(x), each o f  them having 
radius o f  convergence 2, such that f ( x )  + g(x )  
has radius of  convergence 3. 

37. (a) By dividing the series for sinx by that for 
cosx, find the terms through xS  in the series 
for tanx. 

(b)  Find the terms through x4 in the series for 
sec2x = ( d / d x )  tan x. 

(c) Using the result o f  part (b), find the terms 
through x4 in the series for l/sec2x. 

38. Find the terms through x5 in the series for 
- e - X  

tanh x = ---- 
e x  + e -X  

39. Find a power series which converges just when 
- l < x < l .  

40. Why  can't x 'I3 be represented in the form o f  a 
series Cy=oaixi, convergent near x = O? 

Exercises 41-45 contain the proof o f  the results on the 
differentiation and integration of  power series. For sim- 
plicity, we consider only the case xo = 0. Refer to the 
following theorem. 

Theorem Suppose that Cy=oaixi converges for some par- 
ticular value of x ,  say x = xo. Then: 

1. There is an integer N such that 'm < 1 /lxol for all 
i > N .  

2. If 1 yl < Ixol, then Cym0aaLvi converges absolutely. 

Proof For part 1 ,  suppose that 'm > l/lxol for arbi- 
trarily large values o f  i. Then for these values o f  i we 
have lail > 1 /lxoli, and laixil > 1 ;  but then we could 
not have a,x;+O, as is required for convergence. 

For part 2, let r = Iyl/lxol, SO that Irl < 1. By part 
1, laiy ' 1  = lai/ Ixoliri < ri for all i > N. By the compari- 
son test, the series C?="=,ayi converges absolutely; it 
follows that the entire series converges absolutely as 
well. 

*41. Prove that the series f ( x )  = Cy=oaixi, g ( x )  
= Cy= ,iaixi-I, and h ( x )  = C z o [ a i / ( i  + l ) ] x i f  ' 
all have the same radius of  convergence. [Hint: 
Use the theorem above and the definition o f  radius 
o f  convergence on p. 587.1 

*42. Prove that i f  0 < R ,  < R, where R is the radius o f  
convergence of  f ( x )  = C z o a i x i ,  then given any 
e > 0, there is a positive number M such that, for 
every number N greater than M ,  the difference 
I f ( x )  - Cy=oai~iI is less than E for all x in the 
interval [ -  R I ,  R,]. [Hint: Compare ~ ~ " = , + , a i x i  
with a geometric series, using the theorem above.] 

*43. Prove that i f  lxol < R, where R is the radius of  
convergence of  f ( x )  = Cy=oaixi, then f is continu- 
ous at x,. [Hint: Use Exercise 42, together with 
the fact that the polynomial Cy=oaixi is continu- 
ous. Given e > 0, write f ( x )  - f(xo) as a sum of  
terms, each of  which is less than e/3, by choosing 
N large enough and Ix - xol less than some 8.1 

*44. Prove that i f  1x1 < R, where R is the radius o f  
convergence o f  f ( x )  = Cy=oaixi, then the integral 
Jg f( t)dt  (which exists by Exercise 43) is equal to 
C z o [ a i / ( i  + l )]x i+' .  [Hint: Use the result o f  Ex- 
ercise 42 to show that the difference 112; f(t)dt - 
Cy=o[aixi/(i + 1)]I is less than any positive num- 
ber e.] 

*45. Prove that i f  f ( x )  = C7=oaixi and g ( x )  = 

Cy= "=,aixi-' have radius of  convergence R,  then 
f ( x )  = g(x)  on (- R,  R). [Hint: Apply the result 
o f  Exercise 44 to j$g(t)dt; then use the alterna- 
tive version o f  the fundamental theorem of  calcu- 
lus.] 
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12.5 Taylor's Formula 
The power series which represents a function is determined by the derivatives of 
the function at a single point. 

Up until now, we have used various makeshift methods to find power series 
expansions for specific functions. In this section, we shall see how to do this 
systematically. The idea is to assume the existence of a power series and to 
identify the coefficients one by one. 

If f ( x )  = C?=,ai(x - x,)' is convergent for x - x, small enough, we can 
find the coefficient a, simply by setting x = x,: f(xo) = C?=,ai(xO - x,)' = a,. 
Differentiating and then substituting x = x,, we can find a,. Writing out the 
series explicitly will clarify the procedure: 

f ( x )  = a,+ a,(x - x0) + a2(x - xo12+ a3(x - xO), + . . . , S O  f (xO) = a,; 

f ( x )  = a,  + 2a2(x - x,,) + 3a3(x - x ~ ) ~  + 4a4(x - xO), + - . , 

Similarly, by taking more and more derivatives before we substitute, we find 

f " ( x )  = 2a2 + 3 - 2a3(x - x,) 

+ 4 .  3a4(x - x,), + . . - SO f"(xo) = 2a2 ; 

f" ' (x)  = 3 . 2a3 + 4 . 3  . 2a4(x - x,) + - . SO f f f ( x O )  = 3 . 2a3 ; 

f '"(x) = 4 3 .  2a4 + SO f f f ' ( x 0 )  = 4 .  3 - 2a4 ; 

etc. 
Solving for the a,'s, we have a, = f(x,), a ,  = f'(x,), a, = f"(x0)/2, a, 

= f f f ( x 0 ) / 2 .  3, and, in general, ai = f(')(x,)/i!. Here f( ')  denotes the ith 
derivative off, and we recall that i! = i , ( i  - 1 )  . . 3 . 2 . 1 ,  read " i  factorial." 
(We use the conventions that f(O)  = f and O! = 1.) 

This argument shows that if a function f ( x )  can be written as a power 
series in ( x  - x,), then this series must be 

For any f, this series is called the Taylor series off about the point x = x,. 
(This formula is responsible for the factorials which appear in so many 
important power series.) 

The point x, is often chosen to be zero, in which case the series becomes 

and is called the ~ a c l a u r i n ~  series off. 

' Brook Taylor (1685-1731) and Colin Maclaurin (1698-1746) participated in the development of 
calculus following Newton and Leibniz. According to the Guinness Book of World Records, 
Maclaurin has the distinction of being the youngest full professor of all time at age 19 in 1717. He 
was recommended by Newton. Another mathematician-physicist, Lord Kelvin, holds the record 
for the youngest and fastest graduation from college-between October 1834 and November 
1834, at age 10. 
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Iff is infinitely differentiable on some interval containing x,, the series 

is called the Taylor series off at xo. 
When x, = 0, the series has the simpler form 

Example 1 Write down the Maclaurin series for sinx. 

Solution We have 

f(x) = sinx, f (0) = 0; 
f'(x) = cosx, f'(0) = 1 ; 
f"(x)=-sinx, fU(O)=0; 

f ( 3 ) ( ~ )  = - COS X, f(3)(0) = - 1 ; 

f ( 4 ) ( ~ )  = sinx, f("(0) = 0; 

and the pattern repeats from here on. Hence the Maclaurin series is 

Example 2 Find the terms through cubic order in the Taylor series for 1/(1 + x2) at xo = 1. 

Solution Method 1. We differentiate f(x) three times: 

so the Taylor series begins 

1 - -----  1 ( ~ - l ) + - ( x - l ) ~ + o ~ ( x - l ) ~ +  - .  . 
1 + x 2  2 2 4 

Method 2.  Write 
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( x - I ) + -  
2 

) +..-  (geometric series) 

Notice that we can write the Taylor series for any function which can be 
differentiated infinitely often, but we do not yet know whether the series 
converges to the given function. To understand when this convergence takes 
place, we proceed as follows. Using the fundamental theorem of calculus, 
write 

We now use integration by parts with u = f'(t) and v = x - t .  The result 
is 

= f' (xo) (x  - x0) + l ( x  - t ) f"( t )  dt. 

Thus we have proved the identity 

Note that the first two terms on the right-hand side of formula (2) equal the 
first two terms in the Taylor series off. If we integrate by parts again with 

( x  - t)' 
U =  f"( t )  and v =  - 

2 ' 
we get 

S,: ( X  - t ) f"( t )dt= - J X ~ d v =  xo -U~lh  + l ? d ~  

2 

- f " ( ~ 0 )  ( x  - X0)2  + S,: . q L  -- f"'( t )  dt; 
2 

so, substituting into formula (2), 
2 

f l (x0)  ( x  - ..)2+ S,: ( x  ; f ( x )  = f (xo) + f'(xo)(x - xo) + - 2 
f' " ( t )  dt. 

(3) 
Repeating the procedure n times, we obtain the formula 

Copyright 1985 Springer-Verlag.  All rights reserved.



12.5 Taylor's Formula 597 

which is called Taylor's formula with remainder in integral form. The expres- 
sion 

RJX) = 11 q f (" ' "(t) dt 

is called the remainder, and formula (4) may be written in the form 

" f"'(xo) 
f (XI = C -----. (X - x,)~ + R, (x). 

i=o  i !  

By the second mean value theorem of integral calculus (Review Exercise 40, 
Chapter 9), we can write 

for some point c between x, and x. Substituting formula (7) into formula (6), 
we have 

Formula (8)' which is called Taylor's formula with remainder in derivative form, 
reduces to the usual mean value theorem when we take n = 0; that is, 

f (x)  = f(x0) + f'(c)(x - xo) 

for some c between x, and x. 
If R,(x) + 0 as n + co, then formula (6) tells us that the Taylor series off 

will converge to f. 
The following box summarizes our discussion of Taylor series. 

1. If f(x) = C?=,ai(x - x,)' is a convergent power series on an open 
interval I centered at x,, then f is infinitely differentiable and ai 

2. I f f  is infinitely differentiable on an open interval I centered at x,, 
and if Rn(x)+O as n+ co for x in I, where R,(x) is defined by 
formula (5), then the Taylor series off converges on I and equals f: 

Example 3 (a) Expand the function f(x) = 1/(1 + x2) in a Maclaurin series. 
(b) Use part (a) to find f""'(0) and f"""(0) without calculating derivatives off 
directly. 
(c) Integrate the series in part (a) to prove that 

x3 x5 x7 t a n - I x = x - - + - - - +  . . .  
3 5 7 

for 1x1 < 1. 
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+(d) Justify the formula of Euler: 

Solution (a) We expand 1/(1 + x2) as a geometric series: 

which is valid if I - x21 < 1; that is, if 1x1 < 1. By the box above this is the 
Maclaurin series of f(x) = 1/(1 + x2). 
(b) We find that f""'(0)/5! is the coefficient of x5. Hence, as this coefficient is 
zero, f""'(0) = 0. Likewise, f"""(0)/6! is the coefficient of x6; thus f"""(0) 
= - 6 ! .  This is much easier than calculating the sixth derivative of f(x). 
(c) Integrating from zero to x (justified in Section 12.4) gives 

but we know that the integral of 1/(1 + t2) is tan-It, so 

x3 x5 x7 t a n - ' x = x - - + - - - +  . . .  
3 5 7  

for 1x1 < 1. 

(d) If we set x = 1 and use tan-'1 = n/4, we get Euler's formula: 

but this is not quite justified, since the series for tan-'x is valid only for 
1x1 < 1. (It is plausible, though, since 1 - 4 + + - $ + - . , being an alternat- 
ing series, converges.) To justify Euler's formula, we may use the finite form of 
the geometric series expansion: 

Integrating from 0 to 1, we have 

( - 
4 

dt. 
2n + 1 

We will be finished if we can show that the last term goes to zero as n -+ m. 
We have 

Since limn,,[l/(2n + 3)] = 0, the limit of 

is zero as well (by the comparison test on p. 543). A 
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There is a simple test which guarantees that the remainder of a Taylor series 
tends to zero. 

To prove that a function f(x) equals its Taylor series 

it is sufficient to show: 

1. f is infinitely differentiable on I; 
2. the derivatives off grow no faster than a constant C times the powers 

of a constant M; that is, for x in I, 

I fcn)(x)J < CMn, n = 0,1,2,3, . . . . 

To justify this, we must show that R,(x) + 0. By formula (7), 

For any number b, however, bn/n!+O, since ~ y = ~ ( b ' / i ! )  converges by 
Example 7, Section 12.3. Choosing b = M lx - xol, we can conclude that 
Rn(x) -+ 0, so the Taylor series converges to f. 

Example 4 Prove that: 

x2 x3 (a) e x =  1 + x +  - + - + - .  . for allx. 
2 3! 

x3 x5 x7 (b) s i n x = x - -  + -  - -  + - - .  forxin(-m,co) .  
3! 5! 7! 

Solution (a) Let f(x) = ex. since f(")(x) = ex, f is infinitely differentiable. Since all the 
deriva.tives at xo = 0 are 1, the Maclaurin series of ex is C;=:,,(x "/ n!). To 
establish equality, it suffices to show I f(")(x)I < CMn on any finite interval I; 
but f(")(x) = ex, independent of n, so in fact we can choose M = 1 and C the 
maximum of ex on I. 
(b) Since f'(x) = cos x, f"(x) = -sin x, . . . , we see that f is infinitely differ- 
entiable. Notice that f(")(x) is + cosx or + sinx, so I f(")(x)I < 1. Thus we can 
choose C = 1, M = 1. Hence sinx equals its Maclaurin series, which was 
shown in Example 1 to be x - x3/3! +x5/5! - . . . . 
(c) Let x = ?r/2 in part (b). A 

Some discussion of the limitations of Taylor series is in order. Consider, 
for example, the function f(x) = 1/(1 + x2), whose Maclaurin series is 1 - 
x2 + x4 - x6 + - . . . Even though the function f is infinitely differentiable on 
the whole real line, its Maclaurin series converges only for 1x1 < 1. If we wish 
to represent f(x) for x near 1 by a series, we may use a Taylor series with 
xo = 1 (see Example 2). 
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Another instructive example is the function g(x) = e- ' / " * ,  where g(0) 
= 0. This function is infinitely differentiable, but all of its derivatives at x = 0 
are equal to zero (see Review Exercise 123). Thus the Maclaurin series of g is 
C?=,O - x', which converges (it is zero) for all x, but not to the function g. 
There also exist infinitely differentiable functions with Taylor series having 
radius of convergence zero.4 In each of these examples, the hypothesis that 
R,(x) + 0 as n + oo fails, so the assertion in the box above is not contradicted. 
It simply does not apply. (Functions which satisfy R,(x)+O, and so equal 
their Taylor series for x close to x,, are important objects of study; these 
functions are called analytic). 

The following box contains the most basic series expansions. They are 
worth memorizing. 

Binomial: (1 + x)"= 1 + ax + 

(X - 112 (X - 113 
Logarithm: Inx = (x - 1) - + ------ -. . . . 

The only formula in the box which has not yet been justified is the binomial 
series. It may be proved by evaluating the derivatives of f(x) = (1 + x)" at 
x = 0 and verifying convergence by the method of the test in the box entitled 
Taylor series test. (See Review Exercise 124.) If a = n is a positive integer, the 
series terminates and we get the binomial formula 

where 

is the number of ways of choosing k objects from a collection of n objects. 

See B. R. Gelbaum and J. M. H. Olmsted, Coun~erexamples in Analysis, Holden-Day, San 
Francisco (1964), p. 68. 
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Example 5 Expand Js about x, = 0. 

Solutlon The binomial series, with a = + and x2 in place of x, gives 

Taylor's formula with remainder, 

can be used to obtain approximations to f(x); we can estimate the accuracy of 
these approximations using the formula 

(for some c between x and x,) and estimating fen+') on the interval between x 
and x,. The partial sum of the Taylor series, 

is a polynomial of degree n in x called the nth Taylor (or Maclaurin if x, = 0) 
polynomial for f at x,, or the nth-order approximation to f at x,. The first 
Taylor polynomial, 

f(x0) + f'(xo)(x - xo) 

is just the linear approximation to f(x) at x,; the formula for the remainder 
R,(x) = [ f"(c)/2](x - x,)~ shows that we can estimate the error in the-first- 
order approximation in terms of the size of the second derivative f" on the 
interval between x and x,. 

A useful consequence of Taylor's theorem is that for many functions we 
can improve upon the linear approximation by using Taylor polynomials of 
higher order. 

B l  Example 6 Sketch the graph of sinx along with the graphs of its Maclaurin polynomials 
of degree 1, 2, and 3. Evaluate the polynomials at x = 0.02, 0.2, and 2, and 
compare with the exact value of sinx. 

Solution The Maclaurin polynomials of order 1, 2, and 3 are x, x + ox2, and x - x3/6. 
They are sketched in Fig. 12.5.1. Evaluating at x = 0.02, 0.2, 2, and 20 gives 
the results shown in the table below. 

Figure 12.5.1. The first- 

I ,I= , - , 3 /6  and third-order approxima- 
tions to sin x .  

sin x 
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The Maclaurin polynomials through degree 71 for sinx are shown in Fig. 
12.5.2.~ Notice that as n increases, the interval on which the nth Taylor 
polynomial is a good approximation to sinx becomes larger and larger; if we 
go beyond this interval, however, the polynomials of higher degree "blow up" 
more quickly than the lower ones. 

Figure 12.5.2. The 
Maclaurin polynomials for 
sin x through order 7 1. (The 
graphs to the left of they 
axis are obtained by 
rotating the figure through 
180°.) 

The following example shows how errors may be estimated. 

@Example 7 Write down the Taylor polynomials of degrees 1 and 2 for i3& at x, = 27. Use 
these polynomials to approximate 3J28, and estimate the error in the second- 
order approximation by using the formula for R2(x). 

Solution Let f(x) = x ' / ~ ,  x,, = 27, x = 28. Then f'(x) = f x-2/3, f "(x) = - $ x - ~ / ~ ,  and 
yff (x)  = 3 x-''~. Thus f(27) = 3, f'(27) = &, and f"(27) = - (2/37), so the 
Taylor polynomials of degree 1 and 2 are, respectively, 

1 1 I 3 + - (x - 27) and 3 + - (x - 27) - - (x - 27)2. 
27 27 37 

Evaluating these at x = 28 gives 3.0370 . . . and 3.0365798 . . . for the first- 
and second-order approximations. The error in the second-order approxima- 
tion is at most 1/3! times the largest value of (10/27)x-~/~ on [27, 281, which 
is 

- - -  I lo  I = 5 9 0.00001. (Actually, 3JZ8 = 3.0365889 . . . .) 11 
6 27 38 312 

We thank H. Ferguson for providing us with this computer-generated figure. 
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Example 8 By integrating a series for ePx2, calculate ~Ae-"~dx to within 0.001. 

Solution Substituting - x2 for x in the series for ex gives 

Integrating term by term gives 

and so 

This is an alternating series, so the error is no greater than the first omitted 
term. To have accuracy 0.001, we should include &. Thus, within 0.001, 

This method has an advantage over the methods in Section 11.5: to increase 
accuracy, we need only add on another term. Rules like Simpson's, on the 
other hand, require us to start over. (See Review Exercise 84 for Chapter 11.) 
Of course, if we have numerical data, or a function with an unknown or 
complicated series, using Simpson's rule may be necessary. A 

Example 9 Calculate sin(n/4 + 0.06) to within 0.0001 by using the Taylor series about 
xo = n/4. How many terms would have been necessary if you had used the 
Maclaurin series? 

Solution With f(x) = sinx, and xo = n/4, we have 

f (x) = sinx, 

f'(x) = cosx, 1 f'(x0) = - ; 
Jz 

and so on. We have 

f'" + "(c)(x - x0)" + 

% (x) = (n + I)! 
for c between n/4 and n/4 + 0.06. Since f("+')(c) has absolute value less than 
1, we have I Rn(x)l < (0.06)"+'/(n + I)!. To make I R,(x)l less than 0.0001, it 
suffices to choose n = 2. The second-order approximation to sinx is 
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Evaluating at x = ~ / 4  + 0.06 gives 0.7483. 
If we had used the Maclaurin polynomial of degree n, the error estimate 

would have been I Rn(x)l < (n/4 + 0.06)"+'/(n + I)!. To make I Rn(x)l less 
than 0.0001 would have required n = 6. A 

Finally, we show how Taylor series can be used to evaluate limits in indetermi- 
nate form. The method illustrated below is sometimes more efficient than 
l'H6pital's rule when that rule must be applied several times. 

Example 10 Evaluate lim Sin - using a Maclaurin series. 
x+o x3 

Solution Since sinx = x - x3/3! + x5/5! - . - , sinx - x = - x3/3! + x5/5! - . . . , 
and so (sinx - x)/x3 = - 1/6 + x2/5! - - . - . Since this power series con- 
verges, it is continuous at x = 0, and so 

Example 11 Use Taylor series to evaluate 

lim sinx - x 
(a) ~ + o  tanx - x 

(compare Example 4, Section 1 1.2) and 

In x (b) lirn - 
X+I ex - e 

Sin - = (sinx)(cosx) - x cos x 
Solution (a) 

tanx - x sin x - x cos x 

- -x3/6 + . .-  - -116 + ... 
- - (dividing by x3). 

(1/3)x3 + . . . 113 + ... 
Since the terms denoted "+ . . . " tend to zero as x -+ 0, we get 

1/6 1 l i m ~ i n x - x = -  - - -  
X+O t a n ~  - x 1/3 2 '  

lnx -. lim (b) lim - - In x 
x+1 ex - e x+l e(ex-l - 1) 

1 (x - 1) - (1/2)(x - 112 + . . 
= - lim 

e x-1 1 + (x - 1) + (1/2)(x - 1l2+ . - .  - 1 

1 1 -(1/2)(x - 1) + . .  
= - lim 

e X+I 1 + (1/2)(x - 1) + . - . 

For the last example, l'H6pital's rule would have been a little easier to use. 
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Exercises for Section 12.5 
Write down the Maclaurin series for the functions in 
Exercises 1-4. 

1. sin3x 2. cos4x 
3. cosx + e-2x 4. sin2x - e-4X 

Find the terms through x3 in the Taylor series at xo = 1 
for the functions in Exercises 5-8. 

5. 1/(1 + x2 + x4) 6. l / d m  

7. ex  8. tan(.irx/4) 

9. (a) Expand f ( x ) =  1/(1 + x 2 +  x4) in a 
Maclaurin series through the terms in x6, using a 
geometric series. 3) Use (a) to calculate f"""(0). 

10. Expand g(x) = ex' in a Maclaurin series as far as 
necessary to calculate g(*)(0) and g(9)(0). 

Establish the equalities in Exercises 11-14 for a suitable 
domain in x. 

11. l n ( l + x ) = x - x 2 / 2 + x 3 / 3 -  . . . .  
ex2 ex3 12. e l + " = e + e x + -  +-  + . . . .  
2! 3! 

(x - ./412 
14. sinx = [ I  + (x - ) - 2! 

Jz 

- (x - .ir/413 +...I. 
3! 

15. (a) Write out the Maclaurin series for the 

function 1 /\I= .(Use the binomial series.) 
(b) What is ( d 2 0 / d ~ 2 0 ) ( 1 / d ~ ) ~ x = o ?  

16. (a) Using the binomial series, write out the Mac- 
laurin series for g(x)  = JE + \/= . 
(b) Find g(20)(0) and g(2001)(0). 

17. Sketch the graphs of the Maclaurin polynomials 
through degree 4 for cos x. 

18. Sketch the graphs of the Maclaurin polynomials 
through degree 4 for tanx. 

819. Calculate ln(1,l) to within 0.001 by using a 
power series. 

820. Calculate el" 2+0.02 to within 0.0001 using a Tay- 
lor series about xo = ln2. How many terms 
would have been necessary if you had used the 
Maclaurin series? 

P21. Use the power series for ln(1 + x) to calculate 
ln 2 +, correct to within 0.1. [Hint: 2 f = 4 - $ .] 

822. Continue the work of Example 7 by finding the 
third-, fourth-, fifth- (and so on) order approxi- 
mations to 3J28. Stop when the round-off errors 
on your calculator become greater than the re- 
mainder of the series. 

B23. Using the Maclaurin expansion for 1/(1 + x), 
approximate 1A/2[dx/(l + x)] to within 0.01. 

24. Use a binomial expansion to approximate 
JA/~~- dx to within 0.01. 

25. (a) Use the second-order approximation at x0 to 
derive the approximation 

Find an estimate for the error. 
@ (b) Using the formula given in part (a), find an 

approximate value for J1/:,, (dx/ I/=). 
Compare the answer with that obtained from 
Simpson's rule with n = 4. 

26. (a) Can we use the binomial expansion of 
to obtain a convergent series for 0. 

Why or why not? 
(b) W r i t i n g 2 = $ . t , w e h a v e Q  = + m . ~ s e  

this equation, together with the binomial 
expansion, to obtain an approximation to 
\/Z correct to two decimal places. 

(c) Use the method of part (b) to obtain an 
approximation to 0 correct to two decimal 
places. 

Evaluate the limits in Exercises 27-30 using Maclaurin 
series. 

sin 2x - 2x 27. limx,o 
x3 

(use a common de- 

nominator). 
1 + cosx 30. 1imx+ - 
(x  - .12 

Expand each of the functions in Exercises 31-36 as a 
Maclaurin series and determine for what x it is valid. 

37. Find the Maclaurin series for f(x) = (1 + x ~ ) ~  in 
two ways: 
(a) by multiplying out the polynomial; 
(b) by taking successive derivatives and evaluat- 

ing them at x = 0 (without multiplying out). 
38. Write down the Taylor series for lnx  at xo = 2. 
39. Find a power series expansion for 1;ln t dt. Com- 

pare this with the expansion for x lnx. What is 
your conclusion? 

40. Using the Taylor series for sin x and cosx, find 
the terms through x6 in the series for   sin^)^ + 
(cos x ) ~ .  
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Let f(x) = a, + a l x  + a2x2 + . . . . Find a,, a , ,  a,, and 
a3 for each of the functions in Exercises 41-44. 

41. secx 42. d- 
43. (d/dx)d- 44. 

Find Maclaurin expansions through the term in x5 for 
each of the functions in Exercises 45-48. 

45. (1 - cosx)/x2 46. x - sin 3x 
x3 

49. Find the Taylor polynomial of degree 4 for lnx 
at: (a) xo = 1; (b) xo = e; (c) xo = 2. 

50. (a) Find a power series expansion for a function 
f (x) such that f (0) = 0 and f '(x) - f (x) = x. 
(Write f(x) = a, + a,x + a2x2 + . . . and solve 
for the ai7s one after another.) (b) Find a fomu1.a 
for the function whose series you found in part (a). 

Find the first four nonvanishing terms in the power 
series expansion for the functions in Exercises 51-54. 

51. ln(1 + ex) 52. 
53. sin(ex) 54. e "cos x 

B 55. An engineer is about to compute sin(36"), when 
the batteries in her hand calculator give out. She 
quickly grabs a backup unit, only to find it is 
made for statistics and does not have a "sin" key. 
Unperturbed, she enters 3.1415926, divides by 5, 
and enters the result into the memory, called "x" 
hereafter. Then she computes x(l - x2/6) and 
uses' it for the value of sin(36"). 
(a) What was her answer? 
(b) How good was it? 
(c) Explain what she did in the language of 

Taylor series expansions. 
(d) Describe a similar method for computing 

tan(lOo). 
56. An automobile travels on a straight highway. At 

noon it is 20 miles from the next town, travelling 
at 50 miles per hour, with its acceleration kept 
between 20 miles per hour per hour and - 10 

miles per hour per hour. Use the formula x(t) 
= x(0) + xl(0)t + jb(t - s)xl'(s) ds to estimate 
the auto's distance from the town 15 minutes 
later. 

*57. (a) Let 

Find f (0), f"(O), and f"'(0). 
(b) Find the Maclaurin expansion for (sinx)/x. 

*58. Using Taylor's formula, prove the following in- 
equalities: 
(a) ex  - 1 > x for x > 0. 
(b) 6x - x3 + x5/20 > 6 sin x > 6x - x3 for 

x > 0. 
(c) x2 - x4/12 < 2 - ~ C O S X  < x2 for x > 0. 

*59. Prove that ln2= 1 - 3  + $ - a  + - . - .  
*60. (a) Write the Maclaurin series for the 

functions l / d E i  and sin-'x. Where do 
they converge? 

(b) Find the terms through x3 in the series for 
sin-'(sinx) by substituting the series for 
sinx in the series for sinP'x; that is, if 
sin-'x = a o +  a lx  + a2x2+ . . . , then 

sin- '(sin x) 

(c) Use the substitution method of part (b) to 
obtain the first five terms of the series for 
sin- 'x by using the relation sin- '(sin x) = x 
and solving for a. through a,. 

(d) Find the terms through x5 of the Maclaurin 
series for the inverse function g(s) of f(x) 
= x3 + X. (Use the relation g(f(x)) = x and 
solve for the coefficients in the series for g.) 
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12.6 Complex Numbers 
Complex numbers provide a square root for - 1. 

This section is a brief introduction to the algebra and geometry of complex 
numbers; i.e., numbers of the form a + b m .  We show the utility of 
complex numbers by comparing the series expansions for sinx, cosx, and ex  
derived in the preceding section. This leads directly to Euler's formula 
relating the numbers 0, 1, e, T, and m: e"= + 1 = 0. Applications of 
complex numbers to second-order differential equations are given in the next 
section. Section 12.8, on series solutions, can, however, be read before this 
one. 

If we compare the three power series 

it looks as if sinx and cosx are almost the "odd and even parts" of ex. If we 
write the series 

subtract equation (4) from equation (3) and divide by 2, we get 

Similarly, adding equations (3) and (4) and dividing by 2, gives 

These are the Maclaurin series of the hyperbolic functions sinhx and coshx; 
they are just missing the alternating signs in the series for sinx and cosx. 

Can we get the right signs by an appropriate substitution other than 
changing x to - x? Let us try changing x to ax, where a is some constant. We 
have, for example, 

cosh ax = 2 x2 4x4 6 x6 eax + ePax = 1 + a - + a  - + a  - + . . . . 
2 2! 4! 6 !  

This would become the series for cosx if we had a2 = a6 = a'' = . - = - 1 
and a4 = as = aI2 = - . . = 1. In fact, all these equations would follow from 
the one relation a2 = - 1. 

We know that the square of any real number is positive, so that the 
equation a2 = - 1 has no real solutions. Nevertheless, let us pretend that there 
is a solution, which we will denote by the letter i, for "imaginary." Then we 
would have cosh ix = cos x. 

Example 1 What is the relation between sinhix and sinx? 

Solution Since i 2 =  -1, we have i 3 =  -i,  i 4 = ( - i ) . i =  1, i 5 = i ,  i 6 =  -1, etc., so 
substituting ix for x in (5) gives 
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eix - e-ix 
sinh ix = - - ix - i d  + i d  + . . . . 

2 3! 5 !  7! 
Comparing this with equation (I), we find that sinhix = isinx. A 

The sum of the two series (5) and (6) is the series (3), i.e., ex = coshx + sinhx. 
Substituting ix for x, we find 

eix = cosh ix + sinh ix 
or 

elx = cosx + isinx. (7) 
Formula (7) is called Euler's formula. Substituting 77 for x, we find that 

el"' = - 1, 
and adding 1 to both sides gives 

a formula composed of seven of the most important symbols in mathematics: 
0, 1, +, = , e , i , a n d v .  

Example 2 Using formula (7), express the sine and cosine functions in terms of exponen- 
tial~. 

Solution Substituting - x  for x in equation (7) and using the symmetry properties of 
cosine and sine, we obtain 

- 
e 'X=cosx-  isinx. 

Adding this equation to (7) and dividing by 2 gives 
eix + e-ix 

COSX = 7 

while subtracting the equations and dividing by 2i gives 
e i ~  - e-ix 

sinx = 
2 i . A  

Example 3 Find ei(n/2) and e2"'. 

Solution Using formula (7), we have 

and 

Since there is no real number having the property i2 = - 1, all of the 
calculations above belong so far to mathematical "science fiction." In the 
following paragraphs, we will see how to construct a number system in which 
- 1 does have a square root; in this new system, all the calculations which we 
have done above will be completely justified. 

When they were first introduced, square roots of negative numbers were 
deemed merely to be symbols on paper with no real existence (whatever that 
means) and therefore "imaginary." These imaginary numbers were not taken 
seriously until the cubic and quartic equations were solved in the sixteenth 
century (in the formula in the Supplement to Section 3.4 for the roots of a 
cubic equation, the symbol J--?; appears and must be contended with, even if 
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real axis i r n a g i n a r y 3 - i '  axis , 
I 

Figure 12.6.1. A complex 
number is just a point (a, b) 
in the plane. 

all the roots of the equation are real.) A proper way to define square roots of 
negative numbers was finally obtained through the work of Girolamo 
Cardano around 1545 and Bombelli in 1572, but it was only with the work of 
L. Euler, around 1747, that their importance was realized. A way to under- 
stand imaginaries in terms of real numbers was discovered by Wallis, Wessel, 
Argand, Gauss, Hamilton, and others in the early nineteenth century. 

To define a number system which contains i = n, we note that such a 
system ought to contain all expressions of the form a + b- = a + bi, 
where a and b are ordinary real numbers. Such expressions should obey the 
laws 

(a + bi) + (c + di) = (a + c) + (b + d)i 

and 

(a + bi)(c + di) = ac + adi + bci + bdi2 = (ac - bd) + (ad + bc)i. 

Thus the sum and product of two of these expressions are expressions of the 
same type. 

All the data in the "number" a + bi is carried by the pair (a, b) of real 
numbers, which may be considered a point in the xy plane. Thus we define 
our new number system, the complex numbers, by imposing the desired 
operations on pairs of real numbers. 

A complex number is a point (a, b) in the xy plane. Complex numbers are 
added and multiplied as follows: 

(a,b) + ( c , d ) =  ( a +  c , b +  d), 

(a, b)(c, d )  = (ac - bd, ad  + bc). 

The point (0,l) is denoted by the symbol i, so that i2 = (- 1,O) (using 
a = 0, c = 0, b = 1, d = 1 in the definition of muliplication). The x axis is 

It is convenient to 
points on the real 
i2 = - 1. Also, 

denote the point (a,O) just by a since we are thinking of 
axis as ordinary real numbers. Thus, in this notation, 

(a, b) = (a, 0) + (0, b) = (a, 0) + (b, 0)(0,1) 

as is seen from the definition of multiplication. Replacing (a, 0) and (b, 0) by a 
and b, and (0,l) by i, we see that 

(a, b) = a + bi. 

Since two points in the plane are equal if and only if their coordinates are 
equal, we see that 

a + ib = c + id if and only if a = c and b = d. 

Thus, if a + ib = 0, both a and b must be zero. 
We now see that sense can indeed be made of the symbol a + ib, where 

i2 = - 1. The notation a + ib is much easier to work with than ordered pairs, 
so we now revert to the old notation a + ib and dispense with ordered pairs in 
our calculations. However, the geometric picture of plotting a + ib as the 
point (a, b) in the plane is very useful and will be retained. 
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It can be verified, although we shall not do it, that the usual laws of algebra 
hold for complex numbers. For example, if we denote complex numbers by 
single letters such as z = a + ib, w = c + id, and u = e + if, we have 

z(w + u) = zw + zu, 

etc. 

Example 4 (a) Plot the complex number 8 - 6i. (b) Simplify (3 + 4i)(8 + 2i). (c) Factor 

x2  + x + 3. (d) Find 6. 
Solution (a) 8 - 6i corresponds to the point (8, - 6), plotted in Fig. 12.6.2. 

I imaginary axis 
(b) (3 + 4i)(8 + 2i) = 3 8 + 3 - 2i + 4 . 8 i  + 2 .  4i2 

= 24 + 6i + 32i - 8 

[: ; ; ; ; ; ; ; p ~ a ,  
axis 

(c) By the quadratic formula, the roots of x 2  + x + 3 = 0 are given 

-6 i  8-6i by (-  1 IfI J 1 -12 ) /2  = (- 1/2) IfI ( m / 2 ) i .  We may factor using these two 
roots: x2 + x + 3 = [x + (1/2) - (m/2 ) i ] [x  + (1/2) + ( m / 2 ) i ] .  (You may 

Figure 12.6.2. The point check by multiplying out.) 
8-6i plotted in the xy (d) We seek a number z = a + ib such that z2 = i; now z2 = a 2  - b2 + 2abi, 
plane. so we must solve a 2  - b2 = 0 and 2ab = 1. Hence a = IfI b, so b = + ( l / a ) .  

Thus there are two numbers whose square is i, namely, +[ ( l / f i )  + ( i / a ) ] ,  
i.e., 6 = +( l / f i ) ( l  + i) = + ( 6 / 2 ) ( 1  + i). Although for positive real num- 
bers, there is a "preferred" square root (the positive one), this is not the case 
for a general complex number. A 

Example 5 (a) Show that if z = a + ib # 0, then 

1 -  a - i b  - a i 
Z a 2 + b 2  a 2 + b 2  a 2 + b 2  

is a complex number whose product with z equals 1; thus, l / z  is the inverse 
of z, and we can divide by nonzero complex numbers. 
(b) Write 1/(3 + 4i) in the form a + bi. 

Solution (a) (*)(a + ib) = ( l ) ( a  - ib)(a + ib) 
a + b  a 2  + b2 

= ( l ) ( a 2  + aib - iba - b2i2) 
a 2  + b2 

Hence z ( d )  = I, so (a - ib)/(a2 + b2) can be denoted I/z. Note that 
a 2  + b2 

z f 0 means that not both a and b are zero, so a 2  + b2 # 0 and division by the 
real number a 2  + b2 is legitimate. 
(b) 1 /(3 + 4i) = (3 - 4i)/(32 + = (3/25) - (4/25)i by the formula in (a). 

A 
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Figure 12.6.3. Illustrating 
various quantities attached 
to a complex number. 

If z = a + ib is a complex number, then: 

(i) a is called the real part of z; 
(ii) b is called the imaginary part of z (note that the imaginary part is 

itself a real number); 
(iii) a - ib is called the complex conjugate of z and is denoted Z; 

(iv) r =I/- is called the length or absolute value of z and is 

The notions in the box above are illustrated in Fig. 12.6.3. Note that the real 
and imaginary parts are simply the x and y coordinates, the complex conju- 
gate is the reflection in the x axis, and the absolute value is (by Pythagoras' 
theorem) the length of the line joining the origin and z. The argument of z is 
the angle this line makes with the x axis. Thus, (r, 6 )  are simply the polar 
coordinates of the point (a, b). 

"t 
I r = absolute value 

I ; = a - i b  
= complex 

conjugate of i 

The terminology and notation above simplify manipulations with com- 
plex numbers. For example, notice that 

z 5 = (a + ib)(a - ib) = a2  + b2 = (zI2, 

so that l / z  = 2/1zI2 which reproduces the result of Example 5(a). Notice that 
we can remember this by: 

Example 6 (a) Find the absolute value and argument of 1 + i. 
(b) Find the real parts of I/i, 1/(1 + i), and (8 + 2i)/(l - i). 

Solution (a) The real part is 1, and the imaginary part is 1. Thus the absolute value is 

= fi, and the argument is tan- '(1 / 1) = ~ / 4 .  
(b) l / i  = (l/i)(-i/- i) = - i / l  = -i, so the real part of l / i  = - i  is zero. 
1/(1 + i) = (1 - i)/(l + i)(l - i) = (1 - i)/2, so the real part of 1/(1 + i) is 
1 /2. Finally, 

so the real part of (8 + 2i)/(l - i) is 3. A 
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(ii) z is real if and only if z = 2; 
(iii) 1 ~ 1 ~ 2 1  = l ~ l l  1221, 1z1/z21 = 1z11/1z21; and 
(iv) I z ,  + z21 < lzll + 1z21 (triangle inequality). 

The proofs of these properties are left to the examples and exercises. 

Example 7 (a) Prove property (i) of complex numbers. 
(b) Express (1 + i)loo without a bar. 

Solution (a) Let z, = a + ib and z2 = c + id, so 2, = a - ib, f, = c - id. From z1z2 
= (ac - bd) + (ad + bc)i, we get T& = (ac - bd) - (ad + bc)i; we also have 
- - z, -z2 = (a - ib)(c - id) = (ac - bd) - ibc - aid = z-. For the quotient, 
write z2 . z,/z2 = z, so by the rule just proved, - (z,/z,) = 2,. Dividing by F2 
gives the result. 
(b) Since the complex conjugate of a product is the product of the complex 
conjugates (proved in (a)), we similarly have t,z,z, ==F3 = f ,f2f3 and so 

on for any number of factors. Thus z" = f n ,  and hence (1 + i)'OO = 

( W ) l o 0  = (1 - i)loO. 

Example 8 Given z = a + ib, construct iz geometrically and discuss. 

Solution If z = a + ib, iz = ai - b = - b + ia. Thus in the plane, z = (a, b) and iz 
= (-  b, a). This point (- b, a)  is on the line perpendicular to the line Oz since 
the slopes are negative reciprocals. See Fig. 12.6.4. Since iz has the same 
length as z, we can say that iz is obtained from z by a rotation through 90'. A 

i z = - b + i a  

Figure 12.6.4. The number 
iz is obtained from z by a 
90' rotation about the 
origin. 

Using the algebra of complex numbers, we can define f(z) when f is a rational 
function and z is a complex number. 

Example 9 If f(z) = (1 + z)/(l - z) and z = 1 + i, express f(z) in the form a + bi. 

Solution Substituting 1 + i for z, we have 

How can we define more general functions of complex numbers, like ez? One 
way is to use power series, writing 
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To make sense of this, we would have to define the limit of a sequence of 
complex numbers so that the sum of the infinite series could be taken as the 
limit of its sequence of partial sums. Fortunately, this is possible, and in fact 
the whole theory of infinite series carries over to the complex numbers. This 
approach would take us too far afield: though, and we prefer to take the 
approach of defning the particular function eix, for x, real, by Euler's formula 

elx = cosx + isinx. (9) 
Since ex+Y = exeY, we expect a similar law to hold for eix. 

Example 10 (a) Show that 
ei(x+y) = eixeiy 

(b) Give a definition of ez for z = x + iy. 
Solution (a) The right-hand side of equation (10) is 

(cos x + i sin x)(cos y + i sin y ) 

= cosxcos y - sinxsin y + i(sinxcos y + sin ycosx) 

by equation (9) and the addition formulae for sin and cos. 
(b) We would like to have ezl+ "2 = ez'ez2 for any complex numbers, so wf: 
should define = . ell' , i . e - >  - - eX(cos y + isin y). [With this defi- 
nition, the law ez l+ '~  = e"lez> can then be proved for all z, and z2.] A 

Equation (10) contains all the information in the trigonometric addition 
formulas. This is why the use of eix is so convenient: the laws of exponents are 
easier to manipulate than the trigonometric identities. 

- 
Example 11 (a) Calculate eiB and leiBI. (b) Calculate eiT/2 and e". (c) Prove that 

cos n8 - cos(n + 1)8 
1 + cos8 + cos28 + . - - + cosn8 = 

1 - cos8 

by considering 1 + eiB + e2" + . - + eniO 

Solution (a) eiB = cos 8 + i sin 8, so by definition of the complex conjugate we should 
change the sign of the imaginary part: 

since cos(-8)=cos8 and sin(-8)= -sine. Thus lei'/ =/- = 1 

a + b where z = a + ib. using the general definition lzl = dn, 
(b) e iT/2 = cos(n/2) + i sin(n/2) = i and e'" = cos n + i sin m = - 1. 
(c) Since cosn8 is the real part of cine, we are led to consider 1 + e" + . , 
, i*e+ . . . + einB. Recalljng that 1 + r + - . + r n  = (1 - rn+l)/(l - r), we 

get 

See a text on complex variables such as J. Marsden, Basic Complex Analysis, Freeman, New 
York (1972) for a thorough treatment of complex series. 
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Y A Let us push our analysis of eix a little further. Notice that ei8 = cos 8 + i sin8 
i represents a point on the unit circle with argument 8. As 0 ranges from 0 to 

277, this point moves once around the circle (Fig. 12.6.5). (This is the same 
basic geometric picture we used to introduce the trigonometric functions in 

- 1 Section 5.1). 
x Recall that if z = a + ib, and r, 8 are the polar coordinates of (a, b), then 

a = r cos 8 and b = r sin 8. Thus 

-i z = rcos8 + irsin8 = r(cos8 + isin0) = rei8. 
I 

Figure 12.6.5. As 6 goes Hence we arrive at the following. 

from 0 to 277, the point ei" 
goes once around the unit 
circle in the complex plane. 

Taking the real part of both sides gives the result. A 

If z = a + ib and if (r,8) are the polar coordinates of (a,b), i.e., the 
absolute value and argument of z, then 

This representation is very convenient for algebraic manipulations. For exam- 
ple, 

if z1 = rlei"l, z2 = r2ei8z, then z,z2 = r,r2ei(81+83, 

which shows how the absolute value and arguments behave when we take 
products; i.e., it shows that 1z,z21 = lz,l 1z21 and that the argument of zlz2 is the 
sum of the arguments of z, and 2,. 

Let us also note that if z = rei8, then z n  = rnein8. Thus if we wish to solve 
zn  = w where w = pei@, we must have r n  = p, i.e., r = " 6  (remember that r, p 
are non-negative) and ein8 = eiG, i.e., ei(""-*) = 1, i.e., nf3 = + + 21i-k for an 
integer k (this is because ei* = 1 exactly when t is a multiple of 2~-see Fig. 
12.6.5). Thus 0 = cp/n + 21i-k/n. When k = n, 8 = +/n + 21i-, so ei8 = eiG/". 
Thus we get the same value for ei8 when k = 0 and k = n, and we need take 
only k = 0,1,2, . . . , n - 1. Hence we get the following formula for the nth 
roots of a complex number. 

The numbers z such that z n  = w = pei*, i.e., the nth roots of w, are given 

, k=0,1 ,2 ,  . . . ,  n -  1. 

' Abraham DeMoivre (1667-1754), of French descent, worked in England around the time of 
Newton. 
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For example, the ninth roots of 1 are the complex numbers ei2"k/9, for 
k = 0,1, . . . , 8, which are 9 points equally spaced around the unit circle. See 
Fig. 12.6.6. 

It is shown in more advanced books that any nth degree polynomial 

+ 

a, + a,z + . + anzn has at least one complex root8 z, and, as a conse- 
quence, that the polynomial can be completely factored: 

a,+ a , z +  . . - + a n z n =  (z - z,) (z - z,). 

For example, 
I 

Figure 12.6.6. The ninth 
roots of 1. 

although z2 + z + 1 cannot be factored using only real numbers. 

Example 12 (a) Redo Example 8 using the polar representation. (b) Give a geometric 
interpretation of multiplication by (1 + i). 

Solution (a) Since i = ei"l2, iz = rei(e+"/2)if z = reie. Thus iz has the same magnitude 
as z but its argument is increased by m/2. Hence iz is z rotated by 90°, in 
agreement with the solution to Example 8. 

(b) Since (1 + i) = fi ei"/4, multiplication of a complex number z by (1 + i) 
rotates z through an angle n/4 = 45' and multiplies its length by n. A 

Example 13 Find the 4th roots of 1 + i. 
Solution 1 + i = fiei"l4, since 1 + i has r = fi and 0 = n/4. Hence the fourth roots 

are, according to DeMoivre7s formula, 

8JZei(("/16)+("k/2)), k = 0, 1,2,3, 

Exercises for Section 12.6 
Express the quantities in Exercises 1-4 in the form 
a + bi. 

1. e-m/2 2. e"'l4 
3. e(3n/2)1 4. e-'" 

Plot the complex numbers in Exercises 5-12 as points 
in the xy plane. 

5. 4 + 2 i  6. - l + i  
7. 3i 8. -(2+ i) 
9. - 3 i  10. 3 + 7i 

11. 0.1 + 0.2i 12. O +  1.5i 
Simplify the expressions in Exercises 13-20. 

13. (1 + 2i) - 3(5 - 2i) 
14. (4 - 3i)(8 + i) + (5 - i) 

15. (2 + i)2 1 16. - 
(3 + i) 

1 17. - 2 i 18. - 
5 - 3i 1 - i  

Write the solutions of the equations in Exercises 21-26 
in the form a + bi, where a and b are real numbers and 

i = m .  
21. z2 + 3 = 0 
22. z2 - 22 + 5 = 0 
23. z 2 + f z + + = 0  
24. z3 + 2z2 + 22 + 1 = 0 [Hint: factor] 
25. z2  - 72 - 1 = 0 
26. z3 - 3z2 + 32 - 1 = 0 [Hint: factor] 

Using the method of Example 4(d), find the quantities 
in Exercises 27-30. 

27. J8; 28. fi 
29. 30. fi 

See any text in complex variables, such as J. Marsden, op. cir. The theorem referred to is called the "fundamental theorem of 
algebra." It was first proved by Gauss in his doctoral thesis in 1799. 
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Find the imaginary part o f  the complex numbers in 
Exercises 3 1-36. 

Find the complex conjugate o f  the complex numbers in 
Exercises 37-46. 

37. 5 + 2i 38. 1 - bi 

39. 0 + t i  40. l / i  
2 - i  41. - 

31' 
42. i ( l  + i )  

Find the absolute value and argument o f  the complex 
numbers in Exercises 47-58. Plot. 

47. - 1 - i  48. 7 + 2i 
49. 2 50. 4i 
51. t - + i  52. 3 - 2i 
53. - 5 + 7 i  54. -1O+i i  
55. - 8 - 2 i  56. 5 + 5i 
57. 1.2 + 0.7i 58. 50 + 1Oi 

59. Prove property (iii) o f  complex numbers. 
60. Prove property (iv) o f  complex numbers. 
61. Express (8 - 3i14 without a bar. 

62. Express (2  + 3i)2(8 - i13 without a bar. 
In Exercises 63-66, draw an illustration o f  the addition 
o f  the pairs o f  complex numbers, i.e., plot both along 
with their sums. 

63. 1 + + i , 3 - i  64. - 8 - 2 i , 5 -  i 
65. -3 + 4i, 6i 66. 7,4i  

67. Find 1(1 + i)(2 - i)(Q i)l. 
68. I f  z = x + iy, express x and y in terms o f  z 

and Z. 
69. I f  z = x + iy with x and y real, what is lezl and 

the argument o f  e"? 
70. Find the real and imaginary parts o f  ( x  + iy)3 

as polynomials in x and y. 
Write the numbers in Exercises 71-76 in the form 
a + bi. 

71. ei"l3 72. e-ni/3 
73. el-"'/2 74. 
75. +"i/2 76. e( 1 -"/6)' 

77. I f  f ( z )  = 1/z2 ,  express f (2  + i )  in the form 
a + bi. 

78. Express f ( i )  in the form a + bi, i f  f ( z )  = z2 + 
22 + 1 .  

79. (a)  Using a trigonometric identity, show that 
ixe - ix = 1.  ( b )  Show that e V L =  l / e z  for all 

complex numbers z. 
80. Show that e3" = (ez )3  for all complex z. 

81. Prove that ei(8+3"/2) = - jei8. 
82. Prove that 

sine + sin28 + . + sinn8 
sin n8 - sin(n + 1)8 

= ( c o t ; ) ( ; + ; (  sin8 

83. Prove that (cos 8 + i sin 8)" = cos n0 + i sin no, 
i f  n is an integer. 

84. Use Exercise 83 to find the real part o f  

- + - and the imaginary part o f  (h  ; I 3  
Find the polar representation (i.e., z = rei8) o f  the com- 
plex numbers in Exercises 85-94. 

85. 1 + i 1 86. 

87. (2 + i ) - '  88. 

95. Find the fifth roots o f  f - + D i  and 1 + 2i. 
Sketch. 

96. Find the fourth roots o f  i and 6. Sketch. 
97. Find the sixth roots o f  6 + 3i and 3 + 6 i. 

Sketch. 
98. Find the third roots o f  1/7 and i /7 .  Sketch. 
99. Give a geometric interpretation o f  division' by 

1 - i. 
100. (a)  Give a geometric interpretation o f  multipli- 

cation by  an arbitrary complex number z 
= re". 
( b )  What happens i f  we divide? 

101. Prove that i f  z6 = 1 and zI0 = 1 ,  then z = f 1.  
102. Suppose we know that z7 = 1 and z4' = 1.  What 

can we say about z? 
103. Let z = rei8. Prove that Z =  re-". 
104. (a)  Let f ( z )  = az3 + bz2 + cz + d, where a, b, c, 

and d are real numbers. Prove that f(Z) =fo. 
(b )  Does equality still hold i f  a ,  b, c, and d are 
allowed to be arbitrary complex numbers? 

Factor the polynomials in Exercises 105-108, where z is 
complex. [Hint: Find the roots.] 

105. z2 + 22 + i 106. z2 + 2iz - 4 
107. z2 + 2iz - 4 - 4i 108. 3z2 + z - ei"l3 

109. (a)  Write tanie in the form a + bi where a and 
b are real functions o f  8. 
( b )  Write tan i0 in the form rei@. 

110. Let z = f ( t )  be a complex valued function o f  the 
real variable t.  I f  z = x + iy = g ( t )  + ih( t) ,  
where g and h are real valued, we defne dz/dt  
= f ' ( t )  to  be ( d x / d t )  + i ( d y / d t )  = g l ( t )  + 
ih'(t). 
(a)  Show that (d/dt)(Cei"') = iwCei"', i f  C is 
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any complex number and w is any real 
number. 

(b) Show that z = Cei"' satisfies the spring 
equation (see Section 8.1): z" + w2z = 0. 

(c) Show that z = De-'"' also satisfies the 
spring equation. 

(d) Find C and D such that Cei"' + De -'"I 
= f(t) satisfies f(0) = A,  f'(0) = B. Express 
the resulting function f(t)in terms of sines 
and cosines. 

(e) Compare the result of (d) with the results 
in Section 8.1. 

11 1. Let zl  and z2 be nonzero complex numbers. 
Find an algebraic relation between zl and z2 
which is equivalent to the fact that the lines 
from the origin through z, and z2 are perpendic- 
ular. 

112. Let w = f(z) = (1 + (z/2))/(1 - (z/2)). 
(a) Show that if the real part of z is 0, then 

IwI = 1. 
(b) Are all points on the circle Iwl = 1 in the 

range o f f?  [Hint: Solve for z in terms of 
w.1 

113. (a) Show that, if z n  = 1, n a positive integer, 
then either z n - '  + z " - ~  + . . - + z + 1 
= O o r z = l .  

(b) Show that, if zn-I + z " - ~  + . . + z + 1 
= 0, then z n  = 1. 

(c) Find all the roots of the equation z3 + z2 + 
z + l = O .  

114. Describe the motion in the complex plane, as 
the real number t goes from - co to co, of the 
point z = ei"', when 
(a) w = i, (b) w = 1 + i, 
(c) w = -i, (d) w = - 1 - i, 
(e) w = 0, (f) w = l ,  
(g) w = -1. 

115. Describe the motion in the complex plane, as 
the real number t varies. of the point given by 
z = 93,000,000 e2"'(*/3@I+ 1,000,000e2"i~'~29). 
What astronomical phenomenon does this rep- 
resent? 

116. What is the relation between eZ  and e'? 
*117. (a) Find all complex numbers z for which 

ez = -1. (b) How might you define In(-l)? 
What is the difficulty here? 

*118. (a) Find X such that the function x = e" satis- 
fies the equation x u  - 2x' + 2x = 0; x' 
= dx/dt. 

(b) Express the function eA' + e-" in terms of 
sines, cosines, and real exponents. 

(c) Show that the function in (b) satisfies the 
differential equation in (a). 

12.7 Second-Order Linear 
Differential Equations 
The nature of the solutions of ay" + by' + cy = 0 depends on whether the roots 
of ar2 + br + c = 0 are real or complex. 

We shall now use complex numbers to study second-order differential equa- 
tions more general than the spring equation discussed in Section 8. l .  

We begin by studying the equation 

ay" + by' + cy = 0, (1) 
where y is an unknown function of x, y' = dy /dx ,  y" = d$ /dx2 ,  and a,  b, c 
are constants. We assume that a # 0; otherwise equation (1) would be a 
first-order equation, which we have already studied in Sections 8.2 and 8.6. 

We look for solutions of equation (1) in the form 

y = erx, r a constant. P I  
Substituting equation (2) into equation (1) gives 

ar2erx + bre rX + cerx = 0, 
which is equivalent to 

ar2 + br + c = 0, 

since erx # 0. Equation (3) is called the characteristic equation of equation (I). 
By the quadratic formula, it has roots 

Copyright 1985 Springer-Verlag.  All rights reserved.



618 Chapter 12 Infinite Series 

which we shall denote by r, and r,. Thus, y = erl" and y = erZX are solutions 
of equation (1). 

By analogy with the spring equation, we expect the general solution of 
equation (1) to involve two arbitrary constants. In fact, y = c,erlX + c2erzX is a 
solution of equation (1) for constants c, and c,; indeed, note that if y ,  and y, 
solve equation (I), so does c, y ,  + c,y, since 

~ ( ~ I Y I  + ~ 2 ~ 2 ) "  + ~ ( C I Y I  + ~ 2 ~ 2 ) '  + ~ ( C I Y I  + ~ 2 ~ 2 )  
= c,(ay;l + by; + cy,) + c,(ay; + by; + cy,) = 0. 

If r, and r, are distinct, then one can show that y = c,ert" + c2er2" is the 
general solution; i.e., any solution has this form for particular values of c, and 
c,. (See the Supplement to this section for the proof.) 

If ar2 + br + c = 0 has distinct roots r,  and r,, then the general solution 

ay" + by' + cy = 0 

y = clertx + c2er2", c, , c2 constants. 

Example 1 Consider the equation 2y" - 3y' + y = 0. (a) Find the general solution, and 
(b) Find the particular solution satisfying y(0) = 1, y'(0) = 0. 

Solution (a) The characteristic equation is 2r2 - 3r + 1 = 0, which factors: 
(2r - l)(r - 1) = 0. Thus r, = 1 and r, = f are the roots, and so 

is the general solution. 
(b) Substituting y(0) = 1 and y'(0) = 0 in the preceding formula for y gives 

c, + c, = 1, 

c ,  + $c,= 0. 

Subtracting gives $ c, = 1, so c, = 2 and hence c, = - 1. Thus 

is the particular solution sought. A 

If the roots of the characteristic equation are distinct but complex, we can 
convert the solution to sines and cosines using the relation e'" = cosx + 
i sinx, which was established in Section 12.6. Differentiating a complex valued 
function is carried out by differentiating the real and imaginary parts sepa- 
rately. One finds that (d/dt)Cert = Crer' for any complex numbers C and r 
(see Exercise 110 in Section 12.6). Thus, the results in the above box still work 
if r , ,  r,, C, and C, are complex. 

Example 2 Find the general solution of y" + 2y' + 2y = 0. 

Solution The characteristic equation is r2 + 2r + 2 = 0, whose roots are 
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Thus 

= e-x[c,(cosx + isinx) + c2(cosx - isinx)] 

where C ,  = c ,  + c2 and C2 = i(c, - c2). If we desire a real (as opposed to 
complex) solution, C, and C2 should be real. (Although we used complex 
numbers as a helpful tool in our computations, the final answer involves only 
real numbers and can be verified directly.) A 

For the spring equation y" + w? = 0, the characteristic equation is r2 + w2 
= 0, which has roots r = rfr iw, so the general solution is 

y = cl  e juX + C2e -'OX 

= C,cos wx + C2sin wx, 

where C, and C, are as in Example 2. Thus we recover the same general 
solution that we found in Section 8.1. 

If the roots of the characteristic equation are equal (r, = r,), then we have 
so far only the solution y = c,erlx, where c, is an arbitrary constant. We still 
expect another solution, since the general solution of a second-order equation 
should involve two arbitrary constants. To find the second solution, we may 
use either of two methods. 

Method 1. Reduction of Order. We seek another solution of the form 

y = verlx. (4) 
where v is now a function rather than a constant. To see what equation is 
satisfied by v, we substitute equation (4) into equation (1). Noting that 

y f  = vferlx + r,verlx, 

and 

substitution into (1) gives 

a(vN + 2rlvf + r:v)erlx + b(v' + rlv)erlx + cver~" = 0; 

but erix Z 0, ari + br, + c = 0, and 2ar, + b = 0 (since r ,  is a repeated root), 
so this reduces to av" = 0. Hence v = c, + c2x, so equation (4) becomes 

y = (c, + c2x)erlx. ( 5 )  
This argument actually proves that equation (5) is the general solution to 
equation (1) in the case of a repeated root. (The reason for the name 
"reduction of order" is that for more general equations y" + b(x)yl + c(x)y 
= 0, if one solution yl(x) is known, one can find another one of the form 
v(x)y,(x), where vf(x) satisfies a first order equation-see Exercise 48.) 

Method 2. Root Splitting. If ay" + by' + cy = 0 has a repeated root r , ,  the 
characteristic equation is (r - r,)(r - r,) = 0. Now consider the new equation 
(r - r,)(r - (r, + 8)) = 0 which has distinct roots r, and r2 = r + E if 8 st 0. 
The corresponding differential equation has solutions erlx and etrl+'))". Hence 
( l / ~ ) ( e ( ~ l + ~ ) ~  - erlX) is also a solution. Letting E+O, we get the solution 
(d/dr)erXI,,rI = xerlx for the given equation. (If you are suspicious of this 
reasoning, you may verify directly that xerlx satisfies the given equation). 
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If ar2 + br + c = 0 has a repeated root r ,  = r,, then the general solution 

ay" + by' + cy = 0 

y = (c, + c2x)ertx, 

where c, and c2 are constants. 

Example 3 Find the solution of y" - 4y' + 4y = 0 satisfying y'(0) = - 1 and y(0) = 3. 

Solution The characteristic equation is r2 - 4r + 4 = 0, or (r - 2)2 = 0, so r ,  = 2 is a 
repeated root. Thus the general solution is given by equation (5): 

y = (c, + c2x)e2". 

Thus yt(x) = 2cle2" + c2eZX + 2c2xeZX. The data ~ ( 0 )  = 3, ~ ' ( 0 )  = - 1 give 

c, = 3  and 2c, + c 2 =  -1, 

so c, = 3 and c2 = - 7. Thus y = (3 - 7x)e2". A 

Now we shall apply the preceding methods to study damped harmonic 
motion. In Figure 12.7.1 we show a weight hanging from a spring; recall from 

i , spring constant k 

x = 0 is equilibrium air resistance 
proportional to velocity 

Section 8.1 that the equation of motion of the spring is m(d2x/dt2) = F, 
where F is the total force acting on the weight. The force due to the spring is 
- kx, just as in Section 8.1. (The force of gravity determines the equilibrium 
position, which we have called x = 0; see Exercise 5 1.) We also suppose that 
the force of air resistance is proportional to the velocity. Thus F = - kx - 
y(dx/dt), so the equation of motion becomes 

where y > 0 is a constant. (Can you see why there is a minus sign before y?). 
If we rewrite equation (6) as 

where ,8 = y/m and w2 = k/m, it has the form of equation (I) with a = 1, 
b = p, and c = w2. To solve it, we look at the characteristic equation 

-p+,lp '-4w2 
r2 + pr + w2 = 0 which has roots r = 

2 
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Figure 12.7.2. Damped 

If p2  > 4w2 (i.e., /3 > 2w), then there are two real roots and so the solution is 

x = c,eri' + c2er2', where r ,  and r2 are the two roots +(- /3 & d v ) .  
Note that r, and r2 are both negative, so the solution tends to zero as t + co, 
although it will cross the t axis once if c, and c2 have opposite signs; this case 
is called the overdamped case. A possible solution is sketched in Fig. 12.7.2. 

harmonic motion. ' I  
I( damped 

If P2 = 402, there is a repeated root r,  = -P/2, so the solution is 
x = (c, + ~ , t ) e - ~ ' / ~ .  This case is called critically damped. Here the solution 
also tends to zero as t -+ co, although it may cross the t axis once if c, and c2 
have opposite signs (this depends on the initial conditions). A possible 
trajectory is given in Figure 12.7.2. 

Finally, if b2 < 4w2, then the roots are complex. If we let G = 

' 2 I/- = o d m ,  then the solution is 

which represents underdamped oscillations with frequency G. (Air resistance 
slows down the motion so the frequency G is lower than o.) These solutions 
may be graphed by utilizing the techniques of Section 8.1; write x = 
~ e - ~ ' / ~ c o s ( G t  - O), where (A, 6) are the polar coordinates of c, and c,. A 
typical graph is shown in Fig. 12.7.2.At t = 0, 0 = x = c,. 

Example 4 Consider a spring withP = r / 4  and w = v/6. 

(a) Is it over, under, or critically damped? 
rn (b) Find and sketch the solution with x(0) = 0 and x'(0) = 1, for t > 0. 
rn (c) Find and sketch the solution with the same initial conditions but with 

p = r /2.  

Solution (a) Here P2  - 4w2 = r2/16 - 4v2/36 = -7r2/36 < 0, SO the spring is under- 
damped. 

(b) The effective frequency is i3 = w d v  = ( n / 6 ) d m  

= r o / 2 4 ,  so the general solution is 

At t =0,  O =  x = c , .  Thus, 
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Figure 12.7.3. Graph of the 
solution to Example 4. 

Hence 

At t = 0, x' = 1, so 1 = c2[.rrfi /24], and hence c2 = 24/1~fi. Thus the solu- 
tion is 

This is a sine wave multiplied by the decaying factor e-"'I8; it is sketched in 
Fig. 12.7.3. The first maximum occurs when x' = 0; i.e., when tan((.rrfi /24)t) 

= 8fl/24, or t = 2.09, at which point x = 0.84. 

(c) For /3 = ~ / 2 ,  we have P2  - 4a2 = .rr2/4 - 4.rr2/36 = 5.rr2/36 > 0, so the 
spring is overdamped. The roots r, and r2 are 

so the solution is of the form x = ~ , e ( " / ~ ) ( -  '+6/3)' + ~ ~ e ( " / ~ ) ( -  '-6/3)'. At 
t =O,x=O, soc,  + c2=Oor  c, = -c2. Also, at t =0,  

so c, = 6 / ~ 6  and c2 = -6/.rr6. Thus our solution is 

The derivative is x' = c,(r,erl' - r2er2') = c,(r, - r2e('2-'1)')er" which van- 
ishes when 

r l  - e(r2-rr)t 0,. - - - 1 + 6 / 3  =,-(.b/a)t , or t = 1.64; 
'-2 - 1 - 6 / 3  

at this point, x = 0.73 1. See Fig. 12.7.3. A 

Copyright 1985 Springer-Verlag.  All rights reserved.



12.7 Second Order Linear Differential Equations 623 

In the preceding discussion we have seen how to solve the equation (1): 
ay" + by' + cy = 0. Let us now study the problem of solving 

ay" + by' + cy = ~ ( x ) ,  (8) 

where F(x) is a given function of x. We call equation (1) the homogeneous 
equation, while equation (8) is called the nonhomogeneous equation. Using what 
we know about equation (I), we can find the general solution to equation (8) 
provided we can find just one particular solution. 

To see that equation (9) is a solution of equation (8), note that 

To see that equation (9) is the general solution of equation (8), note that if y" is 
any solution to equation (9), then y" - yp solves equation (1) by a calculation 
similar to the one just given. Hencey" -yp must equaly, for suitable cl and c2 
since yh is the general solution to equation (I). Thus y" has the form of 
equation (9), so equation (9) is the general solution. 

Sometimes equation (8) can be solved by inspection; for example, if 
F(x) = Fo is a constant and if c + 0, then y = Fo/c is a particular solution. 

Example 5 (a) Solve 2y" - 3y' + y = 10. (b) Solve 2x" - 3x' + x = 8 cos(t/2) (where x is 
a function of t ) .  (c) Solve 2y" - 3y' + y = 2ePx. 

Solution (a) Here a particular solution is y = 10. From Example 1, 

Thus the general solution, given by equation (9), is 

(b) When the right-hand side is a trigonometric function, we can try to find a 
particular solution which is a combination of sines and cosines of the same 
frequency, since they reproduce linear combinations of each other when 
differentiated. In this case, 8 cos(t/2) appears, so we try 

where A and B are constants, called undetermined coefficients. Then 
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= ( + A - ~ B  ) cos ( - + ( - A + - B  2 sm - . ) . ( i )  
For this to equal 8cos(t/2), we choose A and B such that 

I A - 3 B = 8 ,  and $A+;B=O.  2 2 

The second equation gives B = -3A which, upon substitution in the first, 
gives ; A + q A = 8 .  Thus A=!  and B =  -?, so 

and the general solution is 

A good way to check your arithmetic is to substitute this solution into the 
original differential equation. 
(c) Here we try yp = Ae-X since e-" reproduces itself, up to a factor, when 
differentiated. Then 

2y; - 3yi + yp = 2AeCX + 3Ae-" + Ae-". 

For this to match 2ex, we require 6A = 2 or A = f. Thus yp = f e-" is a 
particular solution, and so the general solution is 

The technique used in parts (b) and (c) of this example is called the method of 
undetermined coefficients. This method works whenever the right-hand side of 
equation (8) is a polynomial, an exponential, sums of sines and cosines (of the 
same frequency), or products of these functions. 

There is another method called variation of parameters or variation of 
constants which always enables us to find a particular solution of equation (8) 
in terms of integrals. This method proceeds as follows. We seek a solution of 
the form 

Y = "lY1+'-'2Y2 ( 10) 

where y ,  and y2 are solutions of the homogeneous equation (1) and v, and v2 
are functions of x to be found. Note that equation (10) is obtained by 
replacing the constants (or parameters) c, and c, in the general solution to the 
homogeneous equation by functions. This is the reason for the name "variation 
of parameters." (Note that a similar procedure was used in the method of 
reduction of order-see equation (4).) Differentiating v , y l  using the product 
rule gives 

(VIYI) '  = ~ Y I  + V I Y ;  9 

and 

(v, y,)" = v;y, + 2v; y; + v, y; , 
and similarly for v2y2. Substituting these expressions into equation (8) gives 
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U [ ( V ; ' ~ ,  + 2v; y; + v, y;') + ( 4 y 2  + 2v;y; + v,yi)] 

+ b[(v; yl + VIY;) + ( 4 ~ 2  + v~Y;)]  + C ( V I Y I  + 02~2)  = F. 

Simplifying, using (I) for y ,  and y,, we get 

U [ V ; ' ~ ,  + 2v; y; + viy, + 2 ~ ; ~ ; ) ]  + b[v; Y ,  + v;y2] = F. (I1) 

This is only one condition on the two functions v, and v,, so we are free to 
impose a second condition; we shall do so to make things as simple as 
possible. As our second condition, we require that the coefficient of b vanish 
(identically, as a function of x): 

v; y ,  + v;y2 = 0. ( 12) 

This implies, on differentiation, that v ; ' ~ ,  + v;y; + viy2 + v;y; = 0, so equa- 
tion (1 l)  simplifies to 

Equations (12) and (13) can now be solved algebraically for v; and v; and the 
resulting expressions integrated to give v, and v,. (Even if the resulting 
integrals cannot be evaluated, we have succeeded in expressing our solution in 
terms of integrals; the problem is then generally regarded as "solved"). 

Variation of Parameters 
A particular solution of the nonhomogeneous equation (8) is given by 

Yp = V l Y l  + 02Y2, 

where y ,  and y2 are solutions of the homogeneous equation and where v, 
and v, are found by solving equations (12) and (13) algebraically for v; 
and v; and then integrating. 

Combining the two preceding boxes, one has a recipe for finding the general 
solution to the nonhomogeneous equation. 

Example 6 (a) Find the general solution of 2y" - 3y' + y = e2" + ed2" using variation of 
parameters. (b) Find the general solution of 2y" - 3y' + y = 1/(1 + x2)  (ex- 
press your answer in terms of integrals). 

Solution (a) Here y ,  = ex and y2 = ex/2 from Example 1. Thus, equations (12) and (1 3) 
become 

v;eX + v;eX/2 = 0, 

respectively. Subtracting, 

and so 

v; = - - ~ / 2 ( ~ 2 x  + - 2 ~ )  = - e 3 ~ / 2  - -5x/2. 

Similarly, 
-x/2 1 - v; = - e v2 - ex + e-3X, 
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and so integrating, dropping the constants of integration, 

v2 = - 2 e3x/2 + 2e -Sx/2 
3 s 

v1 = ex - f e-3x. 

Hence a particular solution is 

Yp = vlYl  + v2Y2 = e2* - I '  -2x - ze2* + ze-2x = 1 2x 
7 3 5 7e 

and so the general solution is 

y = clex + C2ex/' + le2* + l e - 2 x .  
3 15 

The reader can check that the method of undetermined coefficients gives 
the same answer. 
(b) Here equations (12) and (13) become 

respectively. Solving, 

and 
e-X 

0; =- 
e-X 

so 0, = ji?;i dx. 
1 + x 2 '  

Thus the general solution is 

Let us now apply the above method to the problem of forced oscillations. 
Imagine that our weight on a spring is subject to a periodic external force 
Focos a t ;  the spring equation (6)  then becomes 

A periodic force can be directly applied to our bobbing weight by, for 
example, an oscillating magnetic field. In many engineering situations, equa- 
tion (14) is used to model the phenomenon of resonance; the response of a 
ship to a periodic swell in the ocean and the response of a bridge to the 
periodic steps of a marching army are examples of this phenomenon. When 
the forcing frequency is close to the natural frequency, large .oscillations can 
set in-this is resonance? We shall see this emerge in the subsequent develop- 
ment. 

Let us first study the case in which there is no damping: y = 0, so that 
m(d2x/dt2) + kx,= F,,cos a t .  This is called a forced oscillator equation. A 
particular solution can be found by trying xp = C cos a t  and solving for C. We 
find xp = [f0/m(o2 - 02)]cos8r, where w = is the frequency of the 
unforced oscillator. Thus the general solution is 

For further information on resonance and how it was involved in the Tacoma bridge disaster of 
1940, see M. Braun, Differential Equations and their Applications, Second Edition, 1981, Springer- 
Verlag, New York, Section 2.6.1. 
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x = Acosot + Bsinot + Fo cos Qt, 
m(02 - Q2) 

where A and B are determined by the initial conditions. 

Example 7 Find the solution of d2x/dt2 + 9x = 5 cos2t with ~ ( 0 )  = 0, xf(0) = 0, and 
sketch its graph. 

Solution We try a particular solution of the form x = Ccos2t; substituting into the 
equation gives - 4C cos 2t + 9C cos 2t = 5 cos 2t, so C must be 1 .  On the 
other hand, the solution of the homogeneous equation d2x/dt2 + 9x = 0 is 
A cos 3t + B sin 3t, and therefore the general solution of the given equation is 
x(t) = A cos 3t + B sin 3t + cos 2t. For this solution, x(0) = A + 1 and xf(0) 
= 3B, so if x(0) = 0 and xf(0) = O, we must have A = - 1 and B = 0. Thus, 
our solution is x(t) = - cos 3 t + cos 2t. 

To graph this function, we will use the product formula 

sinRtsinSt = 4 [ c o s ( ~  - S ) t  - cos(R + ~ ) t ] .  

To recover - cos 3 t + cos 2t, we must have R + S = 3 and R - S = 2, so 
R = I  2 and S = $ . T h u s  

x(t) = 2 sin($t)sin($t). 

We may think of this as a rapid oscillation, sin$t, with variable ampli- 
tude 2 sin$ t, as illustrated in Fig. 12.7.4. The function is periodic with period 
277, with a big peak coming at n, 377, 577, etc., when -cos3t and cos2t are 
simultaneously equal to 1. g, 

5 x = sin : t 

x / n =  2 sin + t 

x = -cos 3t + cos 21 

Figure 12.7.4. 
x(t)  = -cos3t + cos2t 

= 2sinf tsin2t. 

If in equation (15), x(0) = 0 and xf(0) = 0, then we find, as in Example 7, that 

~ ( t )  = 
Fo (cos Qt - cos a t )  

m(02 - Q2) 
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Figure 12.7.5. Beats. 

If w - Q is small, then this is the product of a relatively rapidly oscillating 
function [sin((w + Q)t/2)] with a slowly oscillating one [sin((o - Q)t/2)]. The 
slowly oscillating function ''modu1ates" the rapidly oscillating one as shown in 
Fig. 12.7.5. The slow rise and fall in the amplitude of the fast oscillation is the 
phenomenon of beats. It occurs, for example, when two musical instruments 
are played slightly out of tune with one another. 

The function (15) is the solution to equation (14) in the case where y = 0 
(no damping). The general case (y # 0) is solved similarly. The method of 
undetermined coefficients yields a particular solution of the form x, 
= ar cosQt + p sinat, which is then added to the general solution of the 
homogeneous equation found by the method of Example 4. We state the result 
of such a calculation in the following box and ask the reader to verify it in 
Review Exercise 1 10. 

The solution of 

~ ( t )  = c,erl' + c2er2' + 

where c, and c, are constants determined by the initial conditions, 

w = 6, r, and r, are roots of the characteristic equation mr2 + yr + 
k = 0 [if r, is a repeated root, replace c,erl' + c,er2' by (c, + c2t)erl'], 

In equation (16), as t + co, the solution c,erl' + c2er2' tends to zero (if y > 0) 
as we have seen. This is called the transient part; the solution thus approaches 
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the oscillatory part, 

which oscillates with a modified amplitude at the forcing frequency D and 
with thephase shift 6. If we vary w, the amplitude is largest when o = D; this is 
the resonance phenomenon. 

Exarnple 8 Consider the equation 

(a) Write down the solution with x(0) = 0, x'(0) = 0. 
(b) Discuss the behavior of the solution for large t. 

Solution (a) The characteristic equation is 

r2 + 8r + 25 = 0 

which has roots r = (-8 t d m ) / 2  = -4 t 3i. Also, m = 1, o = 5, 
D =  1, Fo=2 ,  and y = 8; so 

and 6 = tanp'(&) = tanp'(+) w 0.322. The general solution is given by equa- 
tion (16); writing sines and cosines in place of the complex exponentials, we 
get 

At t = 0 we get 

3 = A + - ;  
40 

so A = - &. Computing x'(t) and substituting t = 0 gives 

sins O=x'(O)= - 4 A + 3 B +  - 
4 4 5  

1 12 1 = - 4 A + 3 B + - = - - + 3 B + - .  
40 40 40 

Thus B = - 6,  and our solution becomes 

(b) As t + co the transient part disappears and we get the oscillatory part 
0.079 cos(t - 0.322). A 
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Supplement to Section 12.7: 
Wronskians 

In this section we have shown how to find solutions to equation (1): ay" + 
by' + cy = 0; whether the roots of the characteristic equation ar2 + br + c = 0 
are real, complex, or coincident, we found two solutions y ,  and y,. We then 
asserted that the linear combination c, y ,  + c2y2 represents the general solu- 
tion. In this supplement we shall prove this. 

Suppose that y ,  and y, are solutions of equation (1); our goal is to show 
that every solution y of equation (1) can be written as y = c, y ,  + c2y2. To do 
so, we try to find c, and c, by matching initial conditions at x,: 

y(x0) = CIYI(XO) + ~ 2 ~ 2 ( ~ 0 ) 7  

y'(x0) = clY;(xo) + c,Y;(xo). 

We can solve these equations for c, by multiplying the first equation by 
y;(xo), the second by y2(xo), and subtracting: 

Similarly, 

These are valid as long as y,(xo)y;(xo) - y2(xo)y;(xo) # 0. The expression 

W(x) = Y ,(x)Y;(x) - Yz(x)Y;(x). (18) 
is called the Wronskian of y ,  and y2 [named after the Polish mathematician 
Count Hoent Wronski.(1778-1853)l. (The expression (18) is a determinant- 
see Exercise 43, Section 13.6). 

Two solutions y ,  and y2 are said to be a fundamental set if their 
Wronskian does not vanish. It is an important fact that W(x) is either 
everywhere zero or nowhere zero. To see this, we compute the derivative of W: 

W'(x) = [y;(x)y;(x) + Y I(x)Y~(x)] - [y;(x)y;(x) + Y~(x)Y;'(x)] 

= Y ,(x)ul(x) - Y ~ ( X ) Y ; ( ~ ) -  

If y ,  and y, are solutions, we can substitute -(b/a)y; - (c/a)y, for y;' and 
similarly for y i  to get 

Thus 

Therefore, from Section 8.2, W(x) = ~ e - ( ~ / " ) "  for some constant K. We note 
that W is nowhere zero unless K = 0, in which case it is identically zero. 

If y ,  and y2 are a fundamental set, then equation (17) makes sense, and so 
we can find c, and c, such that c, y ,  + c, y, attains any given initial condi- 
tions. Such a specification of initial conditions gives a unique solution and 
determines y uniquely; therefore y = c, y ,  + c2y2. In fact, the proof of unique- 
ness of a solution given its initial conditions also follows fairly easily from 
what we have done; see Exercise 46 for a special case and Exercise 47 for the 
general case. Thus, in summary, we have proved: 
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If y ,  and y2 are a fundamental set of solutions for ay" + by' + cy = 0, then 
y = C, y , + c2 y2 is the general solution. 

To complete the justification of the claims about general solutions made 
earlier in this section, we need only check that in each specific case, the 
solutions form a fundamental set. For example, suppose that r ,  and r, are 
distinct roots of ar2 + br + c = 0. We know that y ,  = erlx and y ,  = erZX are 
solutions. To check that they form a fundamental set, we compute 

This is nonzero since r2 f r , ,  so we have a fundamental set. One can similarly 
check the case of a repeated root (Exercise 45). 

-- 

~xeaclsesfoa Section 12.7 
Find the general solution of the differential equations in 
Exercises 1-4. 

1. y" -4y1+3y = O .  2. 2y" - y = 0. 
3. 3y"-4y '+y=O. 4. y " - y ' - 2 y = o .  

Find the particular solutions of the stated equations in 
Exercises 5-8 satisfying the given conditions. 

5. y" - 4y' + 3y = 0, y(0) = 0, y'(0) = 1. 
6. 2y" - y = 0, y(1) = 0, y'(1) = 1. 
7. 3y" - 4 y 1 + y  =o,  y(O)= 1, y'(O)= 1. 
8. y" - y' - 2y = 0, y(l)  = 0, y'(1) = 2. 

Find the general solution of the differential equations in 
Exercises 9- 12. 

9. y" - 4y' + 5y = 0. 10. y" + 2y' + 5y = 0. 
11. y"  - 6y' + 13y = 0. 12. y" + 2y' + 26y = 0. 

Find the solution of the equations in Exercises 13-16 
satisfying the given conditions. 

13. y" - 6y1+ 9y = 0, y(O)=O,y'(O) = 1. 
14. y" - 8y' + 16y = 0, y(0) = -3, y'(0) = 0. 
15. y" - 2 f l y ' + 2 y = 0 , y ( l ) = 0 , y ' ( l ) =  1. 
16. y "  - 2DYf  + 3y = 0, y(0) = 0,y1(O) = - 1. 

In Exercises 17-20 consider a spring with P, w, x(O), 
and x'(0) as given. (a) Determine if the spring is over, 
under, or critically damped. (b) Find and sketch the 
solution. 

17. P = 8/16, w = a/2, x(0) = 0, xi(0) = 1. 
18. /? = 1, w = n/8, x(0) = 1, x'(0) = 0. 
19. p = ~ / 3 ,  w = n/6, x(0) = 0, xl(0) = 1. 
20. /3 = 0.03, w = a/2, x(0) = 1, x'(0) = 1. 

In Exercises 21-28, find the general solution to the 
given equation (y  is a function of x or x is a function of 

In Exercises 29-32 find the general solution to the given 
equation using the method of variation of parameters. 

29. y" - 4y' + 3y = 6x + 10. 
30. y" - 4y' + 3y = 2ex. 
31. 3 x " - 4 x f + x = 2 s i n t .  
32. 3xN - 4x' + x = e' + e-'. 

In Exercises 33-36 find the general solution to the given 
equation. Express your answer in terms of integrals if 
necessary. 

33. y" - 4y' + 3y = tanx. 

In Exercises 37-40, find the solution of the given forced 
oscillator equation satisfying the given initial conditions. 

37. x" + 4x = 3 cost, x(0) = 0, x'(0) = 0. 
38. x" + 9x = 4sin 41, x(0) = 0, x'(0) = 0. 
39. x" + 25x = cost, x(0) = 0, x'(0) = 1. 
40. x" +25x=cos6t,  x(O)= 1, xf(0)=O. 

In Exercises 41-44, (a) write down the solution of the 
given equation with the stated initial conditions and (b) 
discuss the behavior of the solution for large t .  

dx2 dx 42. - + 2 - + 36x = 4 cos 3t, x(0) = 0, xl(0)= 0. 
dt dt 

t as appropriate). d2x dx 
21. y" -4yf+3y  = 6 x  + 10. 43. - + - + 4x = cost, x(0) = 1, x'(0) = 0. 

22. y" - 4y' + 3y = 2ex. 
dt2 df 

23. 3x" - 4x' + x = 2 sin t. d2x dx 44. - + 2 - + 9x = cos4t, x(0) = 1, x'(0) = 0. 
24. 3x" - 4x' + x = e' + e-'. dt2 dt 

25. y" - 4y' + 5y = x + x2. 45. If r, is a repeated root of the characteristic 

26. y" - 4y' + 5y = 10 + e-". equation, use the Supplement to this section to 

27. y" - 2fly1 + 2y = cosx + sinx. show thaty, = erlx and y2 = xerlx form a funda- 

28. y" - 2Gy'  + 2y = cosx - e-X.  mental set and hence conclude that y = c, y l  + 
c2y2 is the general solution to equation (1). 
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*46. Suppose that in (I), a > 0 and b2 - 4ac < 0. If y 
satisfies equation (I), prove w(x) = e(b/2a)"y(x) 
satisfies w" + [(4ac - b2)/4a2]w = 0, which is a 
spring equation. Use this observation to do the 
following. 
(a) Derive the general form of the solution to 

equation (I) if the roots are complex. 
(b) Use existence and uniqueness results for the 

spring equation proved in Section 8.1 to 
prove corresponding results for equation (1) 
if the roots are complex. 

*47. If we know that equation (1) admits a fundamen- 
tal set y l ,  y2, show uniqueness of solutions to 
equation (I) with given values of y(xo) and yl(xo) 
as follows. 
(a) Demonstrate that it is enough to show that 

if y(xo) = 0 and y1(x0) = 0, then y(x) E 0. 
(b) Use facts above the Wronskian proved in 

the Supplement in order to show that 
y ( ~ ) y ' ~ ( x )  - y f ( x ) y l ( x )  = 0 and that  
y(x)yi(x) - y'(x)y2(x) = 0. 

(c) Solve the equations in (b) to show that y(x) 
= 0. 

*48. (a) Generalize the method of reduction of order 
so it applies to the differential equation 
a(x)y" + b(x)yl + c(x)y = 0, a (x )  =#= 0. 
Thus, given one solution, develop a method 
for finding a second one. 

(b) Show that x r  is a solution of Euler's equa- 
tion x 4 "  + axy' + py = 0 if r2 + (a - I)r + 
p = 0. 

(c) Use (a) to show that if (a - 1)2 = 4/3, then 
( l n ~ ) x ( I - ~ ) / ~  is a second solution. 

*49. (a) Show that the basic facts about Wronskians, 
fundamental sets, and general solutions proved 
in the Supplement also apply to the equation in 
Exercise 48(a). 
(b) Show that the solutions of Euler's equations 
found in Exercises 48(b) and 48(c) form a funda- 
mental set. Write down the general solution in 
each case. 

*50. (a) Generalize the method of variation of param- 
eters to the equation a(x)yM + b(x)yf + c(x)y 
= F(x). 
(b) Find the general solution to the equation 
x?" + 5xy' + 3y = xeX (see Exercise 48; express 
your answer in terms of integrals if necessary). 

*51. In Fig. 12.7.1, consider the motion relative to an 
arbitrarily placed x axis pointing downward. 
(a) Taking all forces, including the constant force 
g of gravity into account, show that the equation 
of motion is 

where ye is the equilibrium position of the spring 
in the absence of the mass. 
(b) Make a change of variables x = y + c to 
reduce this equation to equation (6). 

*52. Show that solutions of equation (15) exhibit 
beats, without assuming that x(0) = 0 and xl(0) 
= 0. 

*53. Find the general solution of y"" + y = 0. 
*54. Find the general solution of y"" - y = 0. 
*55. Find the general solution of y"" + y = ex. 
*56. Find the general solution of y"" - y = cos x. 

12.8 Series Solutions 
of Differential Equations 
Power series solutions of differential equations can often be found by the method 
of undetermined coefficients. 

Many differential equations cannot be solved by means of explicit formulas. 
One way of attacking such equations is by the numerical methods discussed in 
Section 8.5. In this section, we show how to use infinite series in a systematic 
way for solving differential equations. 

Many equations arising in engineering and mathematical physics can be 
treated by this method. We shall concentrate on equations of the form 
a(x)y" + b(x)y' + c(x)y  = f (x) ,  which are similar to equation (1)  in Section 
12.7, except that a ,  b, and c are now functions of x rather than constants. The 
basic idea in the power series method is to consider the aj7s in a sum 
y = CF=oajx' as undetermined coefficients and to solve for them in successive 
order. 
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Example 1 Find a power series solution of y" + xy' + y = 0. 

Solution If a solution has a convergent series of the form y = a, + a , x  + a2x2 + . . . 
= CT?oaix', we may use the results of Section 12.4 to write 

CO 

y' = a ,  + 2a2x + 3a3x2 + . = 2 iaixi-' and 
i =  1 

Therefore 

In performing manipulations with series, it is important to keep careful track 
of the summation index; writing out the first few terms explicitly usually 
helps. Thus, 

y" + xyl + y 

= (2a2 + 6a3x + 12a4x2 + . . . ) + (a lx  + 2a2x2 + . . . ) 
+ (a, + a ,x  + a2x2 + - - . ). 

To write this in summation notation, we shift the summation index so all x's 
appear with the same exponent: 

(Check the first few terms from the explicit expression.) Now we set the 
coefficient of each x i  equal to zero in an effort to determine the ai. The first 
two conditions are 

2a2 + a, = 0 (constant term), 

6a3 + 2a, = 0 (coefficient of x). 

Note that this determines a, and a, in terms of a, and a , :  a, = - +ao, 
a, = - + a , .  For i > 1, equating the coefficient of x i  to zero gives 

(i + 2)(i + l)a,+, + (i + l)ai = 0 

Thus, 

Hence 

(- 1)" 
"" = 2n . (2n - 2) . (2n - 4) . . . 4 - 2 
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and 

( - 1)" (- 1)"2"n! 
= (2n + 1)(2n - 1)(2n - 3) . . . 5 . 3  = (2n + l)! " ' 

Thus, we get (using O! = l), 

What we have shown so far is that any convergent series solution must be of 
the form of equation (1). To show that equation (1) really is a solution, we 
must show that the given series converges; but this convergence follows from 
the ratio test. A 

The constants a, and a ,  found in Example 1 are arbitrary and play the same 
role as the two arbitrary constants we found for the solutions of constant 
coefficient equations in the preceding section. 

Example 2 Find the first four nonzero terms in the power series solution of y" + x 4  = 0 
satisfying y(0) = 0, yt(0) = 1. 

Solution Let y = a, + a l x  + a2x2 + . - . . The initial conditions y(0) = 0 and y'(0) = 1 
can be put in immediately if we set a, = 0 and a ,  = 1, so that y = x + 
a2x2 + . - . Then 

y" = 2a2 + 3 . 2a3x + 4 .  3a4x2 + 5 . 4a5x3 + . - + (i + l)iai+ lx i - l  + . 
and so 

x ? = x 3 +  a2x4+ a3x5+ . . . + a,-,xi-' + . . - . 
Setting y" + x? = 0 gives 

a, = 0 (constant term), 

a, = 0 (coefficient of x), 

a, = 0 (coefficient of x2), 

1 
a5= -- (coefficient of x3), 

5 . 4  

a, = 0 = a, = a, (coefficients of x4, x5, x6), 

1 1 
a , = - p  9 . g a 5 =  9 . 8 . 5 . 4  (coefficient of x7), etc. 

Thus, the first four nonzero terms are 

y = x - l x 5 +  1 ,9 - 1 X ' 3 + .  . . . 
5 . 4  9 . 8 - 5 . 4  1 3 . 1 2 . 9 - 8 . 5 . 4  

[The recursion relation is 

and the general term is 

The ratio test shows that this series converges.] A 
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Example 3 (Legendre's equation)'' Find the recursion relation and the first few terms 
for the solution of ( 1  - x ~ ) ~ "  - 2xy' + hy = 0 as a power series. 

Solution We writey = ~ ? = , a ~ x '  and get 

y = a, + a,x + a2x2 + . . + aixi + - . , 
y '= a ,  +2a2x +3a3x2+ . . - + iaixi-I + . . . , 

-2xy' = -2a,x - 2 .  2a2x2 - 2 3a3x3 - . . - 2iaixi - - . , 
y" = 2a2 + 3 - 2a3x + 4 .  3a4x2 + - . . + i ( i  - l ) a , ~ j - ~  + - . . , 

- x?" = -2a2x2 - 3 . 2a3x3 - . . . - j(i - l )a ix i  - . - . 
Thus, setting ( 1  - x ~ ) ~ "  - 2xy' + Ay = 0 gives 

2a2 + ha, = 0 (constant term), 

3 - 2a3 - 2al + hal = 0 (coefficient of x) ,  

4 3a4 - 2a2 - 4a2 + ha, = 0 (coefficient of x2), 

5 4a5 - 3 2a3 - 2 .  3a3 + ha, = 0 (coefficient of x3),  

Solving, 

Thus, the solution is 

The recursion relation comes from setting the coefficient of x i  equal to zero: 

From the ratio test one sees that the series solution has a radius of conver- 
gence of at least 1. It is exactly 1 unless there is a nonnegative integer n such 
that X = n(n + l ) ,  in which case the series can terminate: if n is even, set 
a,  = 0;  if n is odd, set a, = 0. Then the solution is a polynomial of degree n 
called Legendre's polynomial; it is denoted Pn(x). The constant is fixed by 
demanding Pn(l) = 1. A 

'O This equation occurs in the study of wave phenomena and quantum mechanics using spherical 
coordinates (see Section 14.5). 
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Example 4 (Hermite's equation)" Find the recursion relation and the first few terms for 
the solution of y" - 2xy' + hy = 0 as a power series. 

Solution Again writey= a,+ a,x + a2x2+ . - - + a,xi+ . . a ,  SO 

and 

y" = 2a2 + 3 . 2a3x + 4 .  3a4x2 + . - + i(i - l ) ~ , x ' - ~  + . . . 
Setting the coefficients of powers of x to zero in y" - 2xy' + y = 0, we get 

2a2 + ha, = 0 (constant term), 

3 - 2a3 - 2a, + ha, = 0 (coefficient of x), 

4 3a, - 4a2 + ha2 = 0 (coefficient of x2), 

and in general 

(i + 2)(i + l)a,+, - 2ia, + ha, = 0. 

Thus 

and in general, 

Thus 

(6 - h)(2 - A) 
' -ha ,  = a5 = 5.4 5 !  a , ,  

etc., and so 

This series converges for all x. If A is an even integer, one of the series, 
depending on whether or not h is a multiple of 4, terminates, and so we get a 
polynomial solution (called a Hermite polynomial). A 

Sometimes the power series method runs into trouble-it may lead to only one 
solution, or the solution may not converge (see below and Exercise 23 for 
examples). To motivate the method that follows, which is due to Georg 
Frobenius (1 849- 19 17), we consider Euler's equation: 

Here we could try y = a, + a ,x  + a2x2 + - . as before, but as we will now 
show, this leads nowhere. To be specific, we choose a = p = 1. Write 

" This equation arises in the quantum mechanics of a harmonic oscillator. 
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y = a, + a l x  + a2x2 + a3x3 + . , 
xy' = a lx  + 2a2x2 + 3a3x3 + . . . , 

and 

x?" = 2a2x2 + 3 . 2a3x3 + . . . . 
Setting x?" + xy' + y = 0, we get 

a, = O\ (constant term), 

2a1 = 0 (coefficient of x), 

10a3 = 0 (coefficient of x3), etc., 

and so all of the ai's are zero and we get only a trivial solution. 
The difficulty can be traced to the fact that the coefficient of y" vanishes 

at the point x = 0 about which we are expanding our solution. One can, 
however, try to find a solution of the form xr.  Letting y = xr,  where r need 
not be an integer, we get 

y' = rXr-l  SO axy' = arx 

and 

y" = r(r  - l)xr-2 SO x?" = r(r  - l)xr. 

Thus, Euler's equation is satisfied if 

r(r  - 1) + ar  + p=O 
which is a quadratic equation for r with, in general, two solutions. (See 
Exercise 48 of Section 12.7 for the case when the roots are coincident.) 

Frobenius' idea is that, by analogy with the Euler equation, we should 
look for solutions of the form y = x r C & a i x i  whenever the coefficient of y" 
in a second-order equation vanishes at x = 0. Of course, r is generally not an 
integer; otherwise we would be dealing with ordinary power series. 

Example 5 Find the first few terms in the general solution of 4xy" - 2y' + y = 0 using 
the Frobenius method. 

Solution We write 

so -2y' = -2raoxr-' - 2(r + l )a lxr  - 2(r + 2)a2xr+' - . . . and 

Thus to make 4xy" - 2y' + y = 0, we set 

ao[4r(r - 1) - 2r] = 0 (coefficient of x r -  I ) .  

If a, is to be allowed to be nonzero (which we desire, to avoid the difficulty 
encountered in our discussion of Euler's equation), we set 4r(r - 1) - 2r = 0. 
Thus r(4r - 6) = 0, so r = 0 or r = 4. First, we take the case r = 0: 
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Then 4x31" - 2y' + y = 0 gives 

a, - 2a, = 0 (constant term), 

4 - 2a2 - 2 . 2a2 + a ,  = 0 (coefficient of x ) ,  

4 .  6a3 - 3 . 2a3 + a2 = 0 (coefficient of x2);  

SO a ,  =+ao,  a 2 -  - -.La 4 I = -1 8ao ,  and a 3 - - - l a  18 2 ='a 144 0 .  

Thus 

For the case r  = 4, we have 

y = a 0 ~ 3 / 2  + a 1 ~ 5 / 2  + a2x7l2 + a;I2 + . . . , 
-2y' = - 3a0x'/2 - 5aIx3/2 - 7a2x5/2 - 9a3X7/2 - . . . 

and 

4xy" = 3 a , ~ ' / ~  + 5 - 3a1x3/2  + 7 .  5a2x5/2 + 9 .  7a3x7/2 + . . - . 
Equating coefficients of 4x" - 2y' + y = 0 to zero gives 

3a0 - 3ao = 0 (coefficient of x ' / ~ ) ,  

5  . 3a1 - 5a1 + a, = 0 (coefficient of x ~ / ~ ) ,  

9  . 7a3 - 9a3 + a, = 0 (coefficient of x ~ / ~ ) ;  

and 

a2 1 
a 3 = - - = - -  54 280.54 

Thus 

The general solution is a linear combination of the two we have found: 

The equation that determines r, obtained by setting the coefficient of the 
lowest power of x in the equation to zero, is called the indicia1 equation. 

The Frobenius method requires modification in two cases. First of all, if 
the indicial equation has a repeated root r , ,  then there is one solution of the 
form y , (x )  = aoxrl + a lx r '+  + . . and there is a second of the form y,(x) 
= y,(x)lnx + boxr' + blxr"+l + . . . This second solution can also be found 
by the method of reduction of order. (See Exercise 48, Section 12.7.) Second, if 
the roots of the indicial equation differ by an integer, the method may again 
lead to problems: one may or may not be able to find a genuinely new 
solution. If r, = rl + N,  then the second series boxr' + b1xr2+' + . . . is of the 
same form, aoxrl + alxrl+'  + . , . , with the first N coefficients set equal to 
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zero. Thus it would require very special circumstances to obtain a second 
solution this way. (If the method fails, one can use reduction of order, but this 
may lead to a complicated computation). 

We conclude with an example where the roots of the indicial equation 
differ by an integer. 

Exarnple 6 Find the general solution of Bessel's equationI2 x?" + xy' + ( x 2  - k2)y = 0  
with k = +. 

Solution We try y = xrC?=,aix'. Then 
m 

and 
03 

x?" = x ( i  + r  - l ) ( i  + r)aixi+' .  
i = O  

Setting the coefficient of x r  in x?" + xy' + ( x 2  - k2)y = 0  equal to zero, we 
get 

0  = ( r  - l)rao + ra, - $a,, 

so the indicial equation is 0  = ( r  - 1)r + r  - $ = r2 - f , the roots of which 
are r ,  = - 3 and r2 = f , which differ by the integer 1 .  

Setting the coefficient of xr+'  equal to zero gives 

0  = r ( r  + l ) a ,  + ( r  + 1)a, - f a ,  = [ ( r  + I ) ~  - f ] a I ,  

and the general recursion relation arising from the coefficient of xi+',  i  > 2, is 

O =  r ( r +  i )a i+  ( r +  i)ai - :a i  + a i - 2 =  ( ( r  + i ) 2 - $ ) a i +  a , - , .  

Let us work first with the root r ,  = - 3. Since - + and + f are both roots of 
the indicial equation, the coefficients a ,  and a ,  are arbitrary. The recursion 
relation is 

for i >, 2. Thus 

l 2  This equation was extensively studied by F. W. Bessel (1784-1846), who inaugurated modern 
practical astronomy at Konigsberg Obsetvatory. 
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Similarly 

Our general solution is then 

which we recognize to be a,(cosx)/\ljlr + a,(sinx)/&. 
Notice that in this case we have found the general solution from just one 

root of the indicia1 equation. A 

Exercises for Section 12.8 
In Exercises 1-4, find solutions of the given equation in 
the form of power series: y = CT=oaixi. 

1. y " - x y ' - y = o .  2. y" - 2xy' - 2y = 0. 
3. y" + 2xy' = 0. 4. y" + xy' = 0. 

In Exercises 5-8, find the first three nonzero terms in 
the power series solution satisfying the given equation 
and initial conditions. 

5. y" + 2xy' = 0, y(0) = 0, y'(0) = 1. 
6. y"  + 2 x 4  = 0, y(0) = 1, y'(0) = 0. 
7. y" + 2xy' + y = 0, y(0) = 0, y'(0) = 2. 
8. y"  - 2xy' + y = 0, y(0) = 0, y'(0) = 1. 

9. Airy's equation is y" = xy. Find the first few 
terms and the recursion relation for a power 
series solution. 

10. TchebycheffS equation is (1 - x2)y" - xy' + cr2y 
= 0. Find the first few terms and the recursion 
relation for a power series solution. What hap- 
pens if a = n is an integer? 

In Exercises 11-14, use the Frobenius method to find 
the first few terms in the general solution of the given 
equation. 

11. 3xy" - y 1 + y = 0 .  

16. Laguerre functions are solutions of the equation 
xy" + (1 - x)y' + hy = 0. 
(a) Find a power series solution by the Fro- 

benius method. 
(b) Show that there is a polynomial solution if h 

is an integer. 
17. Verify that the power series solutions of y" + w? 

= 0 are just y = A cos wx + B sin wx. 
*18. Find the first few terms of the general solution 

for Bessel's equation of order 3. 
*19. (a) Verify that the solution of Legendre's equa- 

tion does not converge for all x unless A = 
n(n + 1) for some nonnegative integer n. 
(b) Compute Pl(x), P2(x), and P,(x). 

*20. Use Wronskians and Exercise 49 of Section 12.7 
to show that the solution found in Example 1 is 
the general solution. 

*21. Use Wronskians and Exercise 49 of Section 12.7 
to show that the solution found in Example 3 is 
the general solution. 

*22. Prove that the Legendre polynomials are given by 
Rodrigues' formula: 

. . 

14. 2x5" - 2xy' + y = 0. 
*23. (a) Solve x?' + (x - 1)y - 1 = 0, y(0) = 1 as a 

15. Consider Bessel's equation of order k, namely, power series to obtain y = En!  xn, which con- 
x?" + xy' + (x2 - k2)y = 0. verges only at x = 0. (b) Show that the solution is 
(a) Find the first few terms of a solution of the 

form J k ( x ) = a o x k +  a i x k + '  + . - .  . e-l/x e l / x  

(b) Find a second solution if k is not an integer. y = , J r d x .  
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Review Exercises For Chapter 12 
In Exercises 1-8, test the given series for convergence. 
If it can be summed using a geometric series, do so. 

" 
1 

; = I  (12)' 10O(i + 1) 
O0 3i+l 

3. c P 
* 8 

4. c - 
5'-'=, ;=I 9' 

1 1 1  5 . 1 + 2 + -  + -  + -  + . . .  
3 32 33 

1 1 1  6. l o o + -  + -  + -  + . - .  
9 92 93 

" 9 

In Exercises 9-24, test the given series for convergence. 

1 0  4n 

n= 1 (2n + I)! 
" k  

a, 2n 
11. C , 12. c - 

k=l 3 n + 3  
(- 1)"n 00 

13. c - 2 n 14. c - 
n= 1 3" ,,=I n 2 + 3  

" ( - I ) ~ "  " (-115 
15. 2 - 16. c - 

n = i  j = o  j2+ 8 
CQ 2n2 C O .  

17. c - 18. c ---.t__ 
n = l  n! [ = I  i 3 + 8  

00 

19. nee"' fi 
n= I n = 1 n2 - sin299n 

" 1 
m 

21. 2 --- 
,, = 2 (ln n)'" " n =  I 
m m n 23. - n 24. c - 

n =  I (n + I)! (n + I)! 

Sum the series in Exercises 25-32 to within 0.05. 

Tell whether each of the statements in Exercise 33-46 is 
true or false. Justify your answer. 

33. If an -+ 0, then Cr= lan converges. 
34. Every geometric series Cy= lr '  converges. 
35. Convergence or divergence of any series may be 

determined by the ratio test. 
36. CyF11/2' = 1. 
37. e2" = 1 + 2x + x2 + x3/3 + . . . . 

38. If a series converges, it must also converge 
absolutely. 

39. The error made in approximating a convergent 
series by a partial sum is no greater than the 
first term omitted. 

40. cos x = CT='=,(- l)kx2k/(2k)!. 
41. If ,aJ and Cr=obk are both convergent, 

then Cjm= '=,aj + Cr=obk = bO + Cy= l(ai + bi). 
42. Cy= 1)'[3/(i + 2)] converges conditionally. 
43. The convergence of C:= '=,a, implies the conver- 

gence of Cr' '=,(an + an+ ,). 
44. The convergence of C ?= l(an + a, + implies 

the convergence of C r= '=,a,. 

45. The convergence of C:= l(lanl + (bnl) implies 
the convergence of C := 1 an 1. 

46. The convergence of C:= la, implies the conver- 
gence of c:= '=,a:. 

47. If 0 < a, < arn,  r < 1, show that the error in 
approximating Cy= lai by C;= lai is less than or 
equal to urn+ '/(l - r). 

48. Determine how many terms are needed to com- 
pute the sum of 1 + r + r2 + a . . with error 
less than 0.01 when (a) r = 0.5 and (b) r = 0.09. 

Find the sums of the series in Exercises 49-52. 
49. Cr='=,1/9" 

1 50. C r =  I - [Hint: Use partial fractions.] 
n(n + 1) 

[Hint: Write the numerator as 51. Zr=l-  
(n + 1): 

52. CF= I+n [Hint: Differentiate a certain 
2" 

power series.] 
Find the radius of convergence of the series in Exercises 
53-58. 

" ( x -  1/2)" 
56. c 

,,=o (n + l)! 

Find the Maclaurin series for the functions in Exercises 
59-66. 

1 
59. f(x) = cos 3x + e2" 60. g(x) = - 

1 - x 3  

61. f(x) = In(1 + x4) 
1 62. g(x) = --- 

J i T F  
d .  d 2  

63. f(x) = - dx (sin x - x) 64. g(k) = -- dk2 (cos k2) 

(el - 1) 
65. f(x) =cT dt 66. g(y) = o  sin t2 dt 
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Find the Taylor expansion of each function in Exercises 
67-70 about the indicated point, and find the radius of 
convergence. 

67. ex about x = 2 68. l / x  about x = 1 
69. x312 about x = 1 70. cos(nx) about x = 1 

Find the limits in Exercises 71-74 using series methods. 
lim 1 - COS ax  
x-0 x2 

sin m - 6a  - a3x2 72. lim [6 - 
x-+o x5 x4 I. 

(1 + xl3I2 - (1 - Xl3 l2  
73. lim 

x-+o x2 
(x - a12 (x - a)4 

74. lim [l + cos x - ------- + ---- 
x-+n 2 24 I' 

In Exercises 75-78 find the real part, the imaginary 
part, the complex conjugate, and the absolute value of 
the given complex number. 

75. 3 + 7i 76. 2 - 1Oi 
77. I/FT 78. (2 + i)/(2 - i) 

In Exercises 79-82, plot the given complex numbers, 
indicating r and 6 on your diagram, and write them in 
polar form z = reie. 

79. 1 - i 1 + i 80. - 
1 - i  

81. ie"'I2 82. (1 + i)eiT14 

83. Solve for z: z2 - 22 + ai  = 0. 

84. Solve for z: z8 = 6 + 3i. 
Find the general solution of the differential equations in 
Exercises 85-96. 

85. y" + 4y = 0 86. y" - 4y = 0 

87. y" + 6y1+ 5y = O  88. y"  -6y'- 2y = 0 

89. y "  + 3y' - 10y = ex + cosx 

90. y" - 2y' - 3y = x2 + sinx 

91. y" -6y'+9y =COS - (3 
92. y" - 1Oy + 25 = cos(2x) 
93. y" + 4y = ---& . (Express your answer in 

Jrn 
terms of integrals.) 

94. y"  - 3y' - 3y = sin x . (Express your an- 
Jrn 

swer in terms of integrals.) 
95. y"' + 2y" + 2y' = 0 
96. y"' - 3y" + 3y' - y = ex 

In Exercises 97-100, identify the equation as a spring 
equation and describe the limiting behavior as t -+ oo. 

97. x" + 9x + x' = cos2t. 
98. x" + 9x + 0.001~' = sin(50t). 
99. x" + 25x + 6x' = cos(at). 

100. x" + 25x + 0.001~' = cos(60at). 
In Exercises 101-104, find the first few terms of the 
general solution as a power series in x. 

101. y" + 2xy = 0 
102. y" - (4 sinx)y = 0 
103. y" - 2x5'  + 2y = 0 
104. y"  + y' + xy = 0 

Find the first few terms in an appropriate series for at 
least one solution of the equations in ~xercises 105- 
108. 

105. 5x5"  + y' + y = 0. 
106. xy" + y' - 4y = 0. 
107. Bessel's equation with k = 1. 
108. Legendre's equation with X = 3. 

B 109. The current I in the electric circuit shown in 
Figure 12.R.1 satisfies 

where E is the applied voltage and L, R, C are 
constants. 

Figure 12.R.1. An electric 
circuit. 

(a) Find the values of m, k, y that make this 
equation a damped spring equation. 

(b) Find I(t) if I(0) = 0, 11(0) = 0 and L = 5, 
C = 0.1, R = 100, and E = 2 cos(60at). 

110. Verify formula (16) in Section 12.7. 
11 1. Verify that C:=,,x2(1 + x2)-" is a convergent 

geometric series for x # 0 with sum 1 + x2. It 
also converges to 0 when x = 0. (This shows 
that the sum of an infinite series of continuous 
terms need not be continuous.) 

112. A beam of length L feet supported at its ends 
carries a concentrated load of P Ibs at its cen- 
ter. The maximum deflection D of the beam 
from equilibrium is 

(a) Use the formula 2:- ,(l/n4) = a4/90 to 
show that 

[Hint: Factor out 2-4.] 
(b) Show that 

hence D = (1 / 4 8 ) ( ~ ~ ~ /  EI). [Hint: A se- 
ries is the sum of its even and odd terms.] 

(c) Use the first two nonzero terms in the 
series for D to obtain a simpler formula for 
D. Show that this result differs at most by 
0.23% from the theoretical value. 
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113. The deflection y(x , t )  of a string from its 
straight profile at time t, measured vertically at 
location x along the string, 0 < x < L, is 

m 

y (x, t) = 2 Ansin 
n= I 

where A,, L and c are constants. 
(a) Explain what this equation means in terms 

of limits of partial sums for x, t fixed. 
(b) Initially (at t = 0), the deflection of the 

string is 

Find the deflection value as an infinite 
series at the midpoint x = L/2. 

114. In the study of saturation of a two-phase motor 
servo, an engineer starts with a transfer function 
equation V(s)/ E(s) = K/(1 + ST), then goes to 
the first-order approximation V(s)/E(s) = 
K(l - ST), from which he obtains an approxi- 
mate equation for the saturation dividing line. 
(a) Show that l / ( l  + ST) = C:=',,(- ST)", by 

appeal to the theory of geometric series. 
Which values of ST are allowed? 

(b) Discuss the replacement of 1/(1 + ST) by 
I - ST; include an error estimate in terms 
of the value of ST. 

115. Find the area bounded by the curves xy = sin x, 
x = 1, x = 2, y = 0. Make use of the Taylor 
expansion of sin x. 

116. A wire of length L inches and weight w 
Ibs/inch, clamped at its lower end at a small 
angle tan-'P, to the vertical, deflects y(x) in- 
ches due to bending. The displacement y(L) at 
the upper end is given by 

2Po lk3'2u (az) dz 
y(L)  = - 

3 ~ ' / ~  u ( a ~ ~ / ~ )  ' 

where a = f and 

The values of the gamma function r may be 
found in a mathematical table or on some cal- 
culators as r(x) = (x - l)! [ r ( f )  = 1.3541, r ( $ )  
= 0.9027, r ($ )  = 1.5046, r (Y)  = 4.01221. The 
function u is the Bessel function of order - f .  
(a) Find the smallest positive root of u(az) = 0 

by using the first four terms of the series. 
(b) Evaluate y(L) approximately by using the 

first four terms of the series. 
a 1  17. (a) Use a power series for to calculate 

correct to 0.01. (b) Use the result of part 
(a) to calculate 6. How accurate is your an- 
swer? 

118. In each of the following, evaluate the indicated 
derivative: 
(a) f(12)(0), where f ( x ) = x / ( l  + x2); 
(b) f(lo), where f(x) = x6eXC'. 

119. Let 

Determine the numbers BI , B2, and B3. (The Bi 
are known as the Bernoulli numbers.) 

120. Show in the following two ways that C:='=,nan 
= a/(l  - a12 for la1 < 1. 
(a) Consider 

S, = a + 2a2 + 3a3 + . . . + nan, 

and subtract. 
(b) Differentiate CT='=,an = 1/(1 - a) with re- 

spect to a, and then subtract your answer 
from C2=oan = 1/(1 - a). 

12 1. In highway engineering, a transitional spiral is 
defined to be a curve whose curvature varies 
directly as the arc length. Assume this curve 
starts at (0,O) as the continuation of a road 
coincident with the negative x axis. Then the 
parametric equations of the spiral are 

(a) By means of infinite series methods, find 
the ratio x/y for cp = n/4. 

(b) Try to graph the transitional spiral for 
k = 1, using accurate graphs of (cos @)/@, 
(sin@)/@ and the area interpretation of 
the integral. 

*122. The free vibrations of an elastic circular mem- 
brane can be described by infinite series, the 
terms of which involve trigonometric functions 
and Bessel functions. The series 

is called the Bessel Function Jn(x); n is an 
integer > 0. 
(a) Establish convergence by the ratio test. 
(b) The frequencies of oscillation of the circu- 

lar membrane are essentially solutions of 
the equation Jn(x) = 0, x > 0. Examine the 
equation Jo(x) = 0, and see if you can ex- 
plain why J0(2.404) = 0 is possible. 

(c) Check that Jn satisfies Bessel's equation 
(Example 6, Section 12.8). 

*123. Show that g defined by g(x) = e-'/x2 if x # 0 
and g(0) = 0 is infinitely differentiable and 
&')(O) = 0 for all i. [Hint: Use the definition of 
the derivative and the following lemma prov- 
able by l'H6pita11s rule: if P(x) is any polyno- 
mial, then limx,oP(x)g(x) = 0.1 
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s124. Let f(x) = (1 + x)", where a is a real number. 
Show by an induction argument that f(')(x) 
= a ( a  - 1) . . . ( a  - i + 1)(1 + x ) ~ - ' ,  and 
hence show that (1 + x)" is analytic for 1x1 < 1. 

* 125. True or false: The convergence of CF= and 
C:=,b: implies absolute convergence of 
CF= ~anbn. 

*126. (a) Show that if the radius of convergence of 
CF=lanxn is R, then the radius of conver- 
gence of CF= ,anxZn is fl. 
(b) Find the radius of convergence of the series 
C:='=o(7T/4)"x2n. 

*127. Let f(x) = C z o a i x i  and g(x) = f(x)/(l - x). 
(a) By multiplying the power series for f(x) 

and 1/(1 - x), show that g(x) = ~ z ~ b , x ~ ,  
where bi = a, + . . . + a, is the ith partial 
sum of the series C z oaai. 

(b) Suppose that the radius of convergence of 
f(x) is greater than 1 and that f(1) + 0. 
Show that lim,,,b, exists and is not equal 
to zero. What does this tell you about the 

radius of convergence of g(x)? 
(c) Let e x / ( l  - x)  = Cy=obixi .  What is 

lim,, , b, ? 
*128. (a) Find the second-order approximation at 

T = 0 to the day-length function S (see the 
supplement to Chapter 5) for latitude 38" 
and your own latitude. 

(b) How many minutes earlier (compared with 
T = 0) does the sun set when T = 1, 2, 10, 
30? 

(c) Compare the results in part (b) with those 
obtained from the exact formula and with 
listings in your local newspaper. 

(d) For how many days before and after June 
2 1 is the second-order approximation cor- 
rect to within 1 minute? Within 5 minutes? 

*129. Prove that e is irrational, as follows: if e = a / b  
for some integers a and b, let k > b and let 
a = kl(e - 2 - L - L - . . . 

Z !  3! - & ). Show that 
a is an integer and that a < l / k  to derive a 
contradiction. 
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Chapter 7 Answers 
7.1 Calculating integrals 

1. x3 + i2 - 1/2x2 + C 
3. ex  + x 2 +  C 
5. - (cos 2x)/2 + 3x2/2 + C 
7. - e-" + 2sinx + 5x3/3 + C 
9. 1084/9 11. 105/2 

13. 844/5 15. 1/12 
17. 0 19. 6 
21. 3a/4 23. a/12 
25. 1 
27. (e6 - e3)/3 + 3(25/3 - 1)/5 
29. In5 31. 41112 + 61/24 
33. 400 35. 116/15 
37. (b) e(e2) - e + 3 
39. (a) 1 l 

(b) -8 
(c) Note that J: f(t) dt is negative 

41. - 2 t J X Z Z F  

43. 3 
45. (a) 0 

(b) 5/6 
- cos x if 0 < x < 2  
cos(2)-2cosx if 2 < x < 7 1  

47. 2 + tan- '2 - 1 In 5 
49. 16.4 2 

51. (1/2)(e2 - 1) 
53. 16/3 - a 
55. 

57. a / 4  
59. (a) Differentiate the right-hand side. 

(b) Integrate both sides of the identity. 
(c) 1/8 

61. Use the fact that tan-la and tan-'6 lie in the 
interval ( - a/2,  a/2) 

63. 16,000,014 meters 

65. (a) Evaluate the integral. 
(b) A = $45,231.46 ' 

67. (a) R(t) = 2000e'/~ - 2000, C(t) = IOOOt - t2 
(b) $57,279.90 

69. 1 + ln(2) - In(l + e) = 0.380 

7.2 Integration by Substitution 
1. +(x2 + 4)5/2 + C 
3. -1/4(y8+4y - 1)+ C 
5. -1/2tan28+ C 
7. sin(x2 + 2x)/2 + C 
9. (x4 + 2)II2/2 + C 

11. -3(t4'3 + 1 ) y 2 / 2  + C 
13. - cos4(r2)/4 + C 
15. tan- '(x4)/4 + C 
17. - cos(8 + 4) + C 
19. (x5 + ~ ) ~ ~ ' / 1 0 1  + C 

25. sin 8 - sin38/3 + C 
27. lnllnxl + C 
29. 2 sin-'(x/2) + /2 + C 
31. ln(l + sin 8) + C 
33. - cos(ln t) + C 
35. - 3(3 + 1 / ~ ) ~ / ~ / 4  + C 
37. (sin2x)/2 + C 
39. m a non-negative integer and n an odd positive 

integer, or n a non-negative integer and m an odd 
positive integer. 

7.3 Changing Variables in the 
Definite integral 

1. 2 ( 3 0  - l)/3 3. ( 5 6  - 1)/3 
5. 2[(25)'14 - (9)'14]/9 7. 1/7 
9. (e - 1)/2 11. -1/3 

13. 0 15. 1 

17. ln(pcos(n/8)) 19. 1/2 

21. 4 - tan- '(3) + a / 4  
23. (a) a / 2  

(b) ~ / 4  
(c) a /8  

25. The substitution is not helpful in evaluating the 
integral. 

27. (p/2)[tan- ' 2 p  - tanP ' (p /2)]  

29. (1/0)ln[(4 + 3 0 ) / ( 1  +PI1 
31. Let u = x - t. 

33. (5Q - 2 6 ) / 1 0  

35. ( a / 2 7 ) ( 1 4 5 m  2 1 O m )  
37. (a) 1/3 

(b) Yes. 
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7.4 Integration By Parts 
1. (x + ])sin x + cos x + C 
3. x sin 5x/5 + cos 5x/25 + C 
5. (x2 - 2)sin x + 2x cosx + C 
7. (x + I)ex + C 
9. xln(l0x) - x + C 

11. (x3/9)(3 In x - 1) + C 
13. e3S(9s2 - 6s + 2)/27 + C 
15. (x3 - 4) ' /3(~3 + 12)/4 + C 
17. t2sint2 + cost2 + C 
19. - (l/x)sin(l/x) - cos(l/x) + C 
21. - [ln(cos x)I2/2 + C 

23. x COS-'(~X) - JW /2 + c 

29. The integral becomes more complicated. 
31. (16 + n)/5 33. 3(3 In 3 - 2) 

35. \12[(~/4)~ + 3a/4 - 2]/2 - 1. 

37. 0 / 8  - n/24 
39. e - 2 
41. -(e2" - e-2")/4 
43. +(22/3(22/3 + 1)5/2 - 25/2 + 

$ [27/2 - (22/3 + I ) ~ / ~ ] )  % 4.025 

- ' J Z  dx is - l/8 the area of a circle of 

radius fl corrected by the area of a triangle (draw 
a graph). 

49. (- 277 cos 2aa)/a + (sin 2aa)/a2. (This tends to 
zero as a tends to co. Neighboring oscillations 
tend to cancel one another.) 

51. (b) (5e3"/I0 - 3)/34 
53. (a) Use integration by parts, writing cosnx = 

c0sn - 'x X cos X. 
55. 2a2 
57. (a) Q = J ~ c ( a ~ / w  + ~)e-~ 's in(ot)  dt 

(b) Q ( t )  = EC {I - ea'[cos(wt) + a sin(ot)/w]) 
59. 

Review Exercises for Chapter 7 
1. x2/2 - cosx + C 
3. x4/4+ sinx + c 
5. ex - x3/3 - lnlxl + sinx + C 
7. ee + Q3/3 + C 9. -cos(x3)/3 + C 

11. e("))/3 + C 13. (X + 2)6/6 + C 
15. e4x3/ 12 + C 17. -4cos32x + C 
19. x2tan-'x/2 - x/2 + tan-'x/2 + C 
21. sin-'(t/2) + t3/3 + C 
23. xe4"/4 - e4"/ 16 + C 
25. x2sinx +2xcosx - 2sinx + C 
27. (e-"sinx - e-"cosx)/2 + C 
29. x31n 3x/3 - x3/9 + C 
31. (2/5)(x - 2)(x + 3l3l2 + C 
33. x sin 3x/3 + cos 3x/9 + C 
35. 3x sin 2x/2 + 3 cos 2x/4 + C 
37. x2ex2/2 - eX2/2 + C 
39. x2(ln ~ ) ~ / 2  - x2(ln x)/2 + x2/4 + C 
41. 2eJ;(fi - I) + C 
43. sin x lnlsin xl - sin x + C 
45. x tan-'x - In(l + x2)/2 + C 
47. - 1 
49. n/25 
51. sin(]) - sin(] /2) 
53. (n2/32 + 1/2)tan-'(a/4) - m/8 

55. ( 4 p  - 2)/3 + (2Q - 2)a 

57. 3 4 1 5  
59. 399/4 

61. (a) a. = 2, all others are zero. 
(b) a, = 257, bn = -2/n if n # 0, all others are 

zero. 
(c) a, = 8n2/3, an = 4/n2 if n f: 0, 

bo = 0, bn = -4a/n if n f: 0. 
(d) a, = b2 = b3 = 1, all others are zero. 
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67. 2/ (n  + 1 )  
69. 18.225 
71. (a) 90008.46 liters 

(b) 3000.28 liters/minute 
73. ) [sin(ax/2)sin(ax)/a + cos(ax/2)cos(ax)/2m] 

+ C 

75. sin - ' x  - JI- + C 
77. (a) (In ~ ) ~ / 2  + C 

(b)  (2/9)(-  0 / 3  + 1 )  
79. (xfl+'lnxfl+' - xf l+') / (n  + + C 
81. (a) (100/26)(sin 5t/5 + cos 5t + e-25') 

(b) Substitute t = 1.01 in part (a). 
83. (a) m2 + n2 + mn + 2m + 2n + 1 = 0. (b)  The dis- 

criminant is negative. (c) Yes; for example x - ' I2  

and x(-3'6)/4. 
$5. xeax [b  sin(bx) + a cos(bx)]/(a2 + b2) + 

eax[(b2 - a2)cos(bx) - 2ab sin(bx)]/(a2 + b212 + C 

Chapter 8 Answers 
13. - c 0 ~ 2 t  

8.1 Osclllatlsns 
1. cos(3t) = cos 3 t + - [ (  2:j1 
3. cos(6t) + sin(3 t )  

= c o s 6 t + -  + s i n 3  t + -  [ (  2:)] [ (  2:)1 
5. cos3t - 2sin3t/3 

7. - + 0 sin(20 t )  
9. 2m/3, 3, 1/3 

15. m c o s ( 5 t  - tan-'(1/5)) 

tan-I (+) 
Phase shift =- = --- 

W 5 

Copyright 1985 Springer-Verlag.  All rights reserved.



A.46 Chapter 8 Answers 

21. (a) 16n2 
(b) 

23. The frequency decreases by a factor of 6. 
25. (a) 27(d2x/dt2) = -3x + 2x3 

(b) 27(d2x/dt2) = - 3x 
(c) 657 

27. (a) x0 = 
x2+x13Jk,lk, 

1 + m  

(b) f'(x0) > 0 
29. There is no restriction on b. 
31. Multiply (9) by osinot and (10) by cosot and 

add. 
33. (a) V"(xo) > 0, so the second derivative test ap- 

plies. 
(b) Compute dE/dt using the sum and chain 

rules. 
(c) Since E is constant, if it is initially small, the 

and V(x) must remain 

small, so both dx/dt and x - x, remain small. 

8.2 Growth and Decay 

9. 2e8'-a 11. 2e6-*" 
13. 7.86 minutes 15. 2,476 years 

21. Increasing 23. Decreasing 
25. 33,000 years 27. 173,000 years 
29. 1.5 x lo9 years 31. 2,880 years 
33. 49 minutes 35. 4.3 minutes 
37. 18.5 years 
39. The annual percentage rate is 100(e ' / '~~ - 1) 

= 18.53%. 
41. (a) 300 e-0.3' 

(b) 2000; 2000 books will eventually be sold. 
(c) 

43. K is the distance the water must rise to fill the 
tank. 

45. (a) Verify by differentiation. 
(b) a(t) = t(e-'1' + 1 - e-I) 

47. (2m/6)ln 2 

8.3 The Hyperbolic Functions 
1. Divide (3) by cosh2t. 
3. Proceed as in Exam~le 2. 

d 1 d '  1 5. -(coshx) = - -(ex + e-") = -(ex - e-X) 
dx 2 dx 2 
= sinh x. 

7. Use the reciprocal rule and Exercise 5. 
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23. (a) y' = - y / x  
(b)  y' = x / y ;  Y 2  = x2 + C. 

25. (a) 

(b)  y' = 3cx2 
(c) y' = - 1/3cx2; y = I / ~ c x  + C 

27. (a) 

(b)  y = kx2 
29. y(1) w 2.2469 
31. y(1) % 0.4683 

33. Jimrn y ( x )  = 3 

/ / / .... .... .... 

+ / / /  

/ / / / /  

35. lim y ( x )  = l 
x-+m 

8.6 Linear First-Order Equations 

dl 9. The equation is L - + RI = Eocos wt + El and 
dt 

has solution 

Eo I =  - (E sinot - o m s o t  
L ( R / L ) ' + w ~  L 

11. I = EoC - EoC exp(- t / R C ) ;  
I+EoCas t+  +a. 

13. Set y =.9 x 2.51 x lo6 and verify the value of  t.  
15. 6.28 x lo5 - (8.28 x 105)exp(- 2.67 X I O - ~ ~ )  

- (2.01 x 105)exp(- 1.07 x 10-6t) 
17. 15 seconds; 951 meters. 
19. Use separation of  variables to get 

v = r n t a n h t r n  t )  

25. I f  y ,  and y2 are solutions, prove, using methods of  
Section 8.2, uniqueness for y' = P(x)y and apply 
it to y = y l  - y2. (This is one of  several possible 
procedures.) 
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27. (a) w' = ( 1  - n)[ Q + Pw] 
(b) y = 2 l / ( x  Jz) 

- g ( M o  - rt)  + C(M, - r t ) ~ / r  1 29. (a) v = - 
Y - r  y - 2r 

where C = Md- Y/' ) and 

where the air resistance force is yv. 

gM' + CM:/'-'. (b) At burnout, v = - - - 
y - r  y -2r  

Review Exercises for Chapter 8 
1. y = e3' 5. y = (4e3' - 1)/3 

3. y = ( l / f l ) s i n O t  7. y = 4/(4  - t4) 
9. f ( x )  = e4x 

11. f( t)  = cosh2t + sinh2t/2 
13. x( t )  = cost - sin t 
15. x ( t )  = (sinh 3t)/3 
17. y = - ln( l /e  + 1 - e x )  
19. x ( t )  = e-4' 21. y = - t 

23. g(t)  = c o s ( m  t - ( 2 / m ) s i n ( m  t);  ampli- 

tude is ; phase is - t a n 7 ' ( 2 m )  

31. x = e' 
33. y = x2/2 - x - 2eCX + 2 
35. y ( x )  = sinh 5x/sinh 5 
37. 6x cosh(3x2) 

39. 2 x / J z 3 T -  

41. cosh 3 x / J Z  + 3 sinh 3x sinhC'x 

43. ( - 3 / d m ) e x p ( l  - cosh- ' ( 3 ~ ) ) .  

45. tan- '(sinh x )  + C 
47. (1/3)tanh-'(x/3) + C if  1x1 < 3 

(1/3)coth-'(x/3) + C if  1x1 > 3 
49. xcoshx - sinhx + C 

51. x(t)  = c o s m  t 
53. (a) k = 640 

(b) - 6400 newtons 
55. (a) y" + (a2 - P)y = 0 

(c) ~ ( t )  = e-'(cos(fl t)  + ( l / f l s i n f l t ) )  

57. 66.4 years 
59. 54,150 years 
61. 27 minutes 
63. (a) 73 years 

(b) S ( t )  = ke-"' where k = S(0) 
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67. (a) y2/9 + x2 = k, k = 2C/9 

69. 15.2 minutes, no. [The "no" could be "yes" if you 
allow a faster addition of fresh water after drain- 
ing.] 

71. 1 = 2(3 sin nt - n cos nt)/(9 + n2) 
+ [I + 2n/(9 + ~ ~ ) ] e - ~ '  

73. y = -4/3 + ce3" 

75. 1 
77. y = ex is the exact solution; y(1) = e w 2.71828. 
79. y = - l / (x - 1) is the exact solution, it is not 

defined at x = 1. 
81. y = Cea' - (b/a); the answers are all the same. 
83. (a) Verify using the chain rule 

(b) Integrate the relation in (a) 
(c) Solve for T = t; the period is twice the time to 

go from 13 = O  to B = 6,. 
85. (a)y = cosh(x + a) o r y  = 1. 

(b) Area under curve equals arc length. 

(b) kx'I9, k = eC 

Chapter 9 Answers 
9.1 Volumes by the Slice Method 
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25. 13n (See Exercise 11, Section 9.2 for the figure.) 
27. 5 cm3 
29. V = n 2 ( ~  + r)(R - r)2/4 
31. For the two, solids, A,(x)  = A2(x)  NOW use the 

slice method. 

9.2 Volumes by Shell Method 

9. 9n (See the Figure for Exercise 23, in the left-hand 
column.) 

11. 9n 

13. 4 a / 5  (You get a cylinder when this volume is 
added to that of Example 5, Section 9.1.) 

15. 0 n / 2  
17. 24n2 
19. (a) V = 4nr2h + nh3/3 

(b) 4nr2, it is the surface area of a sphere. 
21. (a) 2m2a2b 

(b) 2n2b(2ah + h2) 
(c) 4n2ab 

23. n3/4 - n2 + 271 
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9.3 Average Values and the 
Mean Value Theorem for 
Integrals 

1. 1/4 3. lnJ5/2 

5. 2 7. r / 4  
9. n / 2  - 1 11. -2/3r  

13. 9 + 0  15. 1/2 
17. 55" F 
19. (a) x2/3 + 3x /2  + 2 

(b) The function approaches 2, which is the value 
of f ( x )  at x = 0. 

21. Use the fundamental theorem of calculus and the 
definition of average value. 

23. The average of [ f ( x )  + k ]  is 
k + [the averge of f (x)] .  

25. f ( b )  - f ( a )  = Lb f'(x) dx = f ' (c) - ( b  - a) ,  for 

some c such that a < c < b. 

29. Write F(x)  - F(x,) = f(s)ds. If I f (s)J < M on i,, 
[ a ,  b] (extreme value theorem), I F (x )  - F(x,)l 
< Mlx - x,l, so given E > 0, let 6 = E / M .  

9.4 Center of Mass 

- m,x,  + m2x2 + m3x3 - 
m,  + m2 + m3 

3. Let Mi = m,  + m2 + m3 and M2 = m,. 
5. x = 3  
7. X = 67 
9. x =  1 , J = 4 / 3  

11. X = 2 9 / 2 3 , ~  = 21/23 

13. ( a ) X =  1 / 2 , ~ = 0 / 6  

(b) .T= 3 / 8 , ~ = 0 / 8  

I m2x2 + m3x3 + m4x4 
15. m,x ,  + (m2+ m3 + m4) 

m2 + m3 + m4 1 

21. X = 4/39 Y = 2/3 m l x l  + m2X2 + m3X3 
23. Since xi < b, x = 

m, + m2 + m3 
m,b + m,b + m,b 

Similarly a < X. The center of mass does not lie 
outside the group of masses. 

25. Differentiate n to get the velocity of the center of 
mass and use the definitions of P and M. 

27. x =  -4/21, y=O 

29. F = ( f i n 1 4  - I) / ($ - l ) ,  j j  = 1 / [ 4 ( f i  - I ) ]  
31. x = ( x ,  + x2 + x3)/3, 7 = ( y ,  + y2 + y3)/3 

Supplement to 9.5: 
Integrating Sunshine 

1. The arctic circle receives 1.25 times as much en- 
ergy as the equator. 

364 

3. (a) F = ,{&os21 - s i n 2 ~  + 
T=O 

(b) Expressing sin D in terms of T, the sum in (a) 
yields 

+ sin I sin a cos(2nT/365) 

- tan I sin a cos(2nT/365) 
X cos-I 

This is an "elliptic integral" which you cannot 
evaluate. 

5. nsinlsin D 
7. 0.294; it is consistent with the graph ( T  = 16.5; 

about July 7). 
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9.5 Energy, Power, and Work 
1. 1,890,000 joules 
3. 360 + 96/r  watt-hours 
5. 3/2 7. 0.232 
9. 98 watts 11. (a) 18t2 joules 

(b) 360 watts 
13. 1.5 joules 15. (a) 45,000 joules 

(b) 69.3 meters/second 
17. 41,895,000 joules 19. 125,685,000 joules 
21. 0.15 joules 23. 1.48 x 10' joules 

33. 120/r joules 

35. pgaCx2[ /(a) - f(x)]f'(x) dx; the region is that 

under the graph y = f(x), 0 < x < a, revolved 
about the y-axis. 

37. (a) The force on a slab of height f(x) and width 
1 dx is dx~f("'pgy dy = - pg[ f(x)12 dx. Now in- 
2 

tegrate. 
(b) If the graph off is revolved about the x axis, 

the total force is pg/2a times the volume of 
the solid. 

Review Exercises for Chapter 9 2 (c) - pg x lo6 = 6.53 x lo9 Newtons. 
3 

1. (a) n2/2 
(b) 2n2 

5. 64flr/81 

3. (a) 3x12 
(b) 2x(2 In 2 - 1) 

7. 72x15 
9. 5/4 11. 1 

13. 6 
15. Apply the mean value theorem for integrals. 

17. 1 /3,4/45, 2 6  / 15 

19. 1, (e2 - 5)/4, I / m / 2  
21. 3/2, 1/4, 1/2 

(b) (l i [k, - l 5 ki]2)'/2 
n , = I  n i = l  

(c) Show that if the standard deviation is 0, ki - 
= 0, which implies k; = p. 

(e) All numbers in the list are equal. 
(b) (1&/45) grams 41. Let g(x) = f(ax) - c. Adjust cu so g has zero inte- 

25. X = 5/3, J = 40/9 gral. Apply the mean value theorem for integrals 
27. x = 1/4(21n2 - 1),J = 2(ln2 - 1)2/(2~n2 - 1) to g. (There may be other solutions as well.) 
29. X = 2 7 / 3 5 , ~  = - 12/245 43. The average value of the logarithmic derivative is 
31. (a) 7500 - 2100e-~ joules ln[f(b)/f(a)l/(b - a). 

(b)$(125 - 35e-6) watts 

Chapter 10 Answers 
10.1 TrQgonornetric Integrals 

1. (cos6x)/6 - (cos4x)/4 + C 
3. 3a/4 
5. (sin 2x)/4 - x/2 + C 
7. 1/4 - a/16 
9. (sin 2x)/4 - (sin 6x)/ 12 + C 

11. 0 
13. - 1 /(3 cos3x) + 1 /(5 cos5x) + C 
15. The answers are both tan-'x + C 

17. ,/- - 2 cos - (2/x) + C 

19. (1/2)(sin-'u + uI/-) + C 

21. JG-7 + C 

23. (- i / 3 ) J C 7 ( x 2  + 8) + c 
25. (1/2)sinhP'((8x + 1 ) / m )  + C 

29. 1,0,1/2,0,3/8,0,5/16. 

31. X = ( 6  -fl)/ln(($ + 2)/(fl + 1)) - 1 

g = (tan-'2 - n/4)/[2 In((6  + 2)/(fl + I))] 
33. 125 

35. 0 , 9 J Z / 4  
37. (a) Differentiate [S(t)I3 and integrate the new ex- 

pression. 
(b) [3(- t cos t + sin t + t/8 - (I/32)sin 4t)]'l3 
(c) Zeros at t = nr, n a positive integer. Maxima 

occur when n is odd. 

10.2 Partial Fractions 
1. (1/ 125){4 1n[(x2 + 1)/(x2 - 4x + 4)] + 

(37/2)tan-'x + (15x - 20)/2(1 + x2) - 
5/(x - 2)) + C 

3. 5/4 - 3a/8 
5. (1 /5){ln(x - 2)2 + (3/2)ln(x2 + 2x + 2) - 

tan- '(x + 1)) + C 
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+ 3@/6JEE]+ c 
1 4  25. (a) lnl 1 = kt + - in - 

20 x - 60 20 3 

80(1 - e-20kr) 
(b) x = 

4 -20kr - - 
3 

(c) 26.2 kg 

27. (a) Using the substitution, we get 

(q /m)Ju~+~- lx r -m+l  d ~ .  

(b) If r - rn + 1 = mk, the integral in (a) becomes 

which is an integral of a rational function of u. 

10.3 Arc Length and 
Surface Area 

1. 92/9 
3. 14/3 

5. I b d l + d x  

7. L' dl + cos2x - 2x sin x cos x + x2sin2x dx 

9. p +@ +m 
11. p +@ +m 
13. ( ~ / 6 ) ( 1 3 ~ / ~  - 53/2) 
15. 2654a/9 

17. 2s(@ + ln(1 + 0)) 
19. 1 ~ [ ( 3 ~ / ~  + 1 / 9 ) ~ / ~  - (10/9))/~] 

21. 2 Q s  

23. n(6@ + 4 6 )  
25. (1/27a2)[(4 + 9a2(1 + b))3/2 - (4 + 9a2b)3/2]; the 

answer is independent of c .  

27. ( ~ l ~ ~ d x m  19 

29. (a) C/'fi + aec4x + 4 sec2x dx 

(b) 2nl"/2(tan x + 2x)d5 + sec4x + 4 sec2x dx 
0 

31. (a) ~'J-dx 

2 
(b) 2aJ2(l/x + *)dl  + (I - l /x2) dx 

I 

33. Dividing the curve into 1 mm segments and re- 
volving these, we get about 16 cm2. 

35. Use IsinJ?; xl < 1 to get L < m d x  = 4m. i2" 
37. Estimate each integral numerically. 

39. 2a b[l/(l + x2)](\ll + 4x2/(l + x2f )dx; the I 
integrand is < p / ( 1  + x2). 

41. (a) a (a  + b ) d w ( b  - a) 
(b) Use part (a). 

10.4 Parametric Curves 
1. y = (1/4)(x + 9) 

5. x = t, y = or x = cost/$, = sint 
7. x = t, y = 1/4t. 
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19. ,y = c o s 6  (x > 0), horizontal tangents at t = na, 
n a nonzero integer. The slope is - 1/2 at t = 0 
although the curve ends. 

21. y2  = (1 - x)/2, vertical tangents at t = na, n an 
integer 

23. ( 1 3 ~ ' ~  - 8)/27 

25. (1/2)[6 + (1/2)ln(2 + fi)] 
27. (a) Calculate the speed directly to show it equals 

lal. 
(b) Calculate directly to get lal(t, - to) 

29. (a) y = - x / 2 + n / 2 -  1 

(c) - 3 cos28 - 2 cos 8 dB 
0 

31. 5 
33. (a) 1 = k(cos wt - wt sin wt); . . 

y = k(sin wt + wt cos at). 
(b) k Jm 
(c) 2mkw 

35. (a) x = t + (1 + 4t2)-'I2, 
y = t2 + 2t(l + 4t2)L1/2 

(b) x = k ( i / n ) \ l m  +,/- 

37. (a) We estimated about 338 miles. 
(b) We estimated about 688 miles. 
(c) It would probably be longer. 
(d) The measurement would depend on the defini- 

tion and scale of the map used. 
(e) From the World Almanac and Book of Facts 

(1974), Newspaper Enterprise Assoc., New 
York, 1973, p. 744, we have coastline: 228 
miles, shoreline: 3,478 miles. 

10.5 Length and Area in 
Polar Coordinates 
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c / * 4 ( 1  + cos 6 - 6 sin 812 + 8 '(1 + 2 cos 8 + cos28.) dB 

25. fl(e2(n+l)n - 2"" e ) 
27. (a) Use x = a cost, y = b sin t, where T = 2a. 

(b) Substitute into the given formula. 

Review Exercises for Chapter 10 
1. sin3x + C 
3. (cos 2x)/4 - (cos 8x)/ 16 + C 
5. (1 - x2)3/2 -I/=- + C 
7. 4(x/4 - tanP'(x/4)) + C 

9. (20/7)tan-'[(2x + 1 ) / 0 ]  + C 
11. Inl(x + ])/XI - I/x + C 
13. (1/2)[ln1x2 + 1) + 1/(x2 + I)] + C 
15. tan- '(x + 2) + C 

17. - 2& cos& + 2 sin& + C 
19. - (1 /2a)cot(ax/2) - (1 /6a)cot3(ax/2) + C 
21. lnlsecx + tan xl - sinx + C 
23. (tan- ' ~ ) ~ / 2  + C 

25. (1/3~fi)[lnlx - - l n { w  

37. 2edx + +C 
39. i ln 2 
41. aln(x2 + 3) + C 
43. x41n x/4 - x4/ 16 + C 
45. 4 [(In 6 + 514 - (ln 3 + 5)" 1~ 186.12 
47. (1 /4)sinh 2 - 1 /2 
49. 0 
51. (7333/2 - 43/2)/243 
53. 59/24 
55. ~ ( 5 ~ 1 '  - 1)/6 
57. -31103 
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89. (a) b - a + (bn+l - an+ ' ) / (n  + 1) i f  n f - 1 .  I f  
n = - 1, we have b - a + ln(b/a). 

( b ) n = O :  L = b - a ;  n = 1 :  L = f l ( b - a ) ;  
n = 2: see Example 3 o f  Section 10.3; 
for n = (2k + 3)/(2k + 2), k = 0,  1 ,  2, 3, . . . 

(c )  Around the x-axis, we have 

i f  n f - 1 or - 1/2. For n = - 1 we have 

For n = - 1/2  we have 

Around the y-axis we have 

[ 
2(bn+2 - an+2) 

a b2 - a2 + 
n + 2  

2 ln(b/a)] .  

I 
i f  n # -2. For n = -2, we have n [b2  - a2 + 

(d )  A, = 2nL ( from 89(b)) + Ax ( from 88(d)) 
A, = A, ( from 88(d)) 

Some answers from 88(d) needed here are: 
88(d). 

n = 0;  A, = 2a(b  - a )  

65. y = 3 x / 4  + 5 / 4  n = 3 ; A x = x ( 1  27 +9x4 )  

67. ( 1 / 8 ) ( m  16 + l n l m  + 161) 
69. L = (1 /3)[ (n2/4  + 4)3/2 - 81 n = (2k + 3) / (2k  + 1); k = 0,1,2,3, . . . 

A = n5/320 k k ( - l l k - I  
2~ n(l+n)/(l-n)(l + n2x2n-2)3/2 c ( .)- A x =  - ( I  + n'~'"-~)' 

71. L = ~ 1 / ( 5 / 4 )  + cos 28 + 3 sin2228 dB n - 1  ,=o J 2j + 3 

A = 3a /8  n = 0;  A, = n(b2  - a2) 
73. L = 5 0  

A = 315n/256 + 9 / 4  n =  1 ;  ~ ~ = Q n ( b ~ -  a2) 

75. b2 = 1 ,  all others are zero. n = 2- A = 1 [ ( I  + 4b2)3/2 - (1 + 4a2)l/2] 
77. a, = 1,  all others are zero. ' Y  6 
79. a, = 3, all others are zero. n = ( k  + 2 ) / ( k  + I ) ;  k = 0,1,2,3, . . . ; 
81. a. = 1 ,  a, = - 1/2, all others are zero. 
83. (a) ( l /k2)ln[N0(klN(t)  - k2)/N(t)(k,N0 - k2)l 

- 2n n2/( 1 -n)(, + n2x2n-2)3/2 
n - 1  

(b )  N ( t )  = k ,  No/[k lNo( l  - ek2') + k2ek2'] 
(c)  The  limit exists i f  k2  > 0 and it equals k 2 / k , .  2 211-2 J b 

85. Use (cos +) d+ = (sin h ) ( c o s  P )  dB and substitute. 
- - - ( l+nx  )la 

91. (a)  2 n f  a ' r  sin 81 /+( r ' ) i  dB 

(-a)- ' /2sin- '[(-2ax - b)/\I-] + C,  (b )  2nJ"/' cos 28 sin 8 \ I m  d8 
a < O  - 11/4 
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93. (a) 

(b) Each curve will consist of n loops for n odd or 
even. 

(c) 

95. The last formula is the average of the first two. 
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Chapter 11 Answers 
11.1 Limits of Functions 51: 4/5 53. 2n + I 

1. Choose 6 less than 1 and &/(I + 21al). 
3. Write x3 + 2x2 - 45 = 

[(x - 3) + 313 + 2[x - 31' - 45 and expand. 
5. e3 7. 5 
9. -4 11. 6 

13. A = 1 /~6  15. A =- -In E/3 

17. -2 19. 2/3 
21. 3/5 23. 1/2 

25. 0. Consider - x  as the difference be- 
tween the hypotenuse and a leg of a right triangle. 
As x gets large, the difference becomes small. 

27. y = - 1 is a horizontal asymptote. 

55. 16/17 
57. + co 
59. - 00 

61. y = 0 is a horizontal asymptote; x = - 1, x = 1 
are vertical asymptotes. 

63. y = -+ l are horizontal asymptotes. 
65. If f (x)= a n x n +  . . . and g(x)= b,xn+ . . . , 

show that an/bn = I. If I = 2 co, then 
lim ,,-, f(x) can be -t-lim,,, f(x). 

67. (a) f'(x) = - 1 for x < 0, f'(x) = 1 for x > 0, f'(0) 
is not defined. 

(b) As x+O -, the limit is - 1, while as x+O +, 
we get 1. 

(c) No. 

31. +co 69. (a) 29. + co 
33. + co 35. - co 
37. - 1 39. - 1 
41. Vertical asymptotes at x = 2, 3. Horizontal 

asymptote at y = 0. 

43. Vertical asymptotes at x = f 1, horizontal 
asymptote at y = 0. 

(i) a poor 6 (ii) a good 6 

71. No, which means that the population in the distant 
future will approach an equilibrium value No.  

45. (a) Given E, the A for g is the same as for f (as 73. Use the laws bf limits 
long as I g(x)l < I f(x)I for x >, A). 75. Write af(x) + bg(x) - aL - bM = 

(b) 0 a[f(x> - Ll + b[g(x) - MI 
47. 7/9 49. 3/2 
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77. Repeat the argument given, using Ix - x,l < 6 in 
place of xo < x < x, + 6. 

79. Given B > 0, let E = 1/B. Choose 6 so that 
Il/f(x)I < E when Ix - xol < 6; then I f(x)I > B 
for Ix - xol < 6. 

81. If x > A, y < 6 where 6 = 1/A, y = l /x .  

1t.2 LgH6pltalgs Rule 
1. 108 3. 2 
5. -9/10 7. -4/3 
9. w 11. 0 

13. 0 15. 0 
17. 1 19. 0 
21. 0 23. 0 
25. 0 
27. does not exist (or is + co) 
29. 0 31. 1/24 
33. 0 35. 1/120 
37. 0 
39. The slope of the chord joining (g(a), f(a)) to 

(g(b), f(b)) equals the slope of the tangent line at 
some intermediate point. 

41. 

43. (a) 1 /2 
(b) 1 
(c) Yes 

4 1.3 lmpvoper Integrals 
1. 3 3. e-5/5 
5. (ln3)/2 7. s / 2  
9. Use l /x3  11. Use e-X 

13. Use I/,/% on [I, co) 15. Use 1 /x  
17. 3 3m 19. 2 
21. Diverges 23. Converges 
25. Converges 27, Converges 
29. Converges 31. Diverges 
33. Converges 35. Converges 
37. Diverges 39. Diverges 
41. k > l o r k = O  43. w 2.209 

45. 6 0  hours 47. se  - 20/2 
49. ln(2/3) 
51. Follow the method of Example 11. 

53. (a) Change variables 
(b) Use the comparison test. (Compare with 
for x < - 1 and e-"l2 for x > 1.) 

55. (a) s 

(b) (P - 1x9 - 1) < 0. 
Xf'(s) ds; the integral converges. 

11.4 Limits of Sequences and 
Newton's Method 

1. n must be at least 6. 
3. lim,,,(a,) = 2 

5. 0, - 1 , 4 - 2 Q , 9 - 2 0 , 1 2  
7. 1/7,1/14,1/21,1/28,1/35,1/42 
9. The sequence is 1/2 for all n. 

11. N > 3/E 13. n > 3/28 
15. 3 17. -3 
19. 4 21. 0 
23. 0 25. The limit is 1. 
27. The limit is 1. 29. 0 
31. 0 33. 0 
35. (a) x = 0.523148 is a root. 

(b) x = - 0.2475,7.7243 
37. x = 1.118340 is a root. 
39. One root is x = 4.493409. 
41. 

43. 1 / e  w 0.36788 
45. a, = Z2"-' 
47. Use the definition of limit and let E be a. 
49. 1, 1/2, 1/4,1/8, 1/16? . . . , 1/(2,), . . . ; the 

limit is 0. 
51. The limit does not exist. 
53. 3/4 
55. (a) For any A > 0 there is an N such that a, > A 

if n > N, (b) let N = 16A. 
57. (a) Assume Jimrn b, < L and look at 

lim b, - lim a,. 
n+m n-tm 

(b) Write b, - L = (6, - a,) + (a, - L) < 
(cn - an) + (an - L). 

59. (a) Below about a = 3.0, iterates converge to a 
single point; at a % 3.1, they oscillate be- 
tween two points; as a increases towards 4, 
the behavior gets more complicated. 

(b),(c) See the references on p. 548. 

1. 2.68; actual value is 8/3 3. ~ 0 . 1 3 4 8 8  
5. w 0.3246 7. % 1.464 
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9. -2.1824 
11. Evaluation gives a (x: - x3 /3  + b(x: - x:)/2 + 

c(x2 - x,). Since f""(x) = 0, Simpson's rule gives 
the exact answer. The error for the trapezoidal rule 
depends on f "(x) and is nonzero. 

13. 180, 9 
15. 158 seconds 
17. The first 2 digits are correct. 

Review Exercises for Chapter 11 
1. Choose 6 to be min(1, c/4). 
3. Choose 6 to be min(l,s/5); min(l,s/3) is also 

correct. 
5. tan(- 1) 7. 1 
9. 0 11. co 

13. 0 15. 0 
17. y = k 7/2 are horizontal asymptotes. 

19. y = 0 is a horizontal asymptote. 

25. 0 27. 5 
29. - 1 /6 31. sec2(3) 
33. 1 35. 0 
37. 0 39. 1 
41. e2 43. 0 
45. Converges to 1 47. Diverges 
49. Converges to 2 51. Converges to 5/3 
53. Converges to - 1/4 55. 2 7 / 3 0  
57. 7/4 59. 32,768 
61. e8 63. 0 
65. 1 67. tan 3 
69. Does not exist 71. -2/5 
73. 1 75. 0 
77. - 1.35530 (the only real root) 
79. 1.14619 
81. 2.31992 83. 50.154 
85. Both 87. 1/6 
89. (b) 

lim { [  f(xo + 2h) - 3f(xo + h) + 3f(xo) - f(xo - h)l/h3) 
h+O 

91. 1 
93. Sn is the Riemann sum for f(x) = x + x2. 
95. The exact amount is 

p t e r  + e364r/365 + . . . + er/365) 

97. (a) 

m 
Y 

(c) Choose 6 = c/2rn, (or h, whichever is smallest). 
101. (a) Use the definition of N 

(b) Use the quotient rule 
(c) IN(x) - X I  g (Mq/p2)lx - XI2 
( 4  5 

Chapter 12 Answers 
12.1 The Sum of an 

Infinite Series 
1. 1/2,5/6,13/12,77/60 
3. 2/3,30/27,38/27,130/81 
5. 7/6 7. 7 
9. $40,000 11. 1/12 

13. 16/27 15. 81/2 
17. 3/2 19. 64/9 
21. C 1 diverges and C 1 /2' converges 

23. 7 25. Diverges 
27. Diverges 29. Diverges 
31. Reduce to the sum of a convergent and a diver- 

gent series. 
33. Let ai = 1 and bi = - 1. 
35. (a) a ,  + a2 + - . . + an = (b2 - b,) + 

( b 3 - b 2 ) +  . . .  + ( b n + I - b n ) = b n + l - b l  
(see Section 4.1). 

(b) 1 
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12/27 r . 12/13 
37. (b) Ct2n+ I = - and C t 2 n + 2 =  - 

I - r  I - r  

The sum is 1. 

12.2 The Comparison Test and 
Alternating Series 

1. Use 8/3' 3. Use 1/3' 
5. Use 1/3' 7. Use 1/2' 
9. Use I / i  11. Use 4/3i 

13. Converges 15. Converges 
17. Diverges 19. Converges 
21. Converges 23. Diverges 
25. Converges 27. Diverges 
29. Converges 31. Diverges 
33. Converges 35. 0.29 
37. 0.37 39. Diverges 
41. Diverges 
43. Converges absolutely 
45. Diverges 
47. Converges conditionally 
49. Converges conditionally 
51. -0.18 
53. -0.087 
55. Converges 

57. (a) a ,  =2,  a 2 = 6 .  a 3 = d z  

(b) lim an -2.5616 
n+w 

59. Increasing, bounded above. (Use induction.) 
61. Increasing for n 3 2, bounded above. 
63. Show by induction that a2,a3, . . . is decreasing 

and bounded below, so converges. The limit I 
1 B satisfies I = - ( I  + - ). 
2 1 

65. lim an = 4 
n-w 

67. The limit exists by the decreasing sequence prop- 
erty. 

69. Compare with (3/4)". 

12.3 The Integral and Ratio Tests 
1. Diverges 3. Converges 
5. Converges 7. Converges 
9. 0.44 11. Use Figure 12.3.2. 

13. Converges 15. Converges 
17. 1 1.54 19. (a) w 1.708 

(b) - 1.7167 
(c) 8 or more terms. 

21. Converges 23. Diverges 
25. Converges 27. Diverges 
29. Converges 31. Converges 
33. Converges 35. Converges 
37. Show that if 1anl'/" > 1, then lanl > 1. 
39. p > 1 
41. p > l 

I n -  l 1 43. (a) S - f(n) = x f(i) + f(n) + 
i= 1 

now use the hint. 
(b) Sum the first 9 terms to get 1.0819. The first 
method saves the work of adding 6 additional 
terms. 

45. (b) 

S, ( r )  --- S,(O) = 1 

12.4 Power Seriies 
1. Converges for - I < x < 1. 
3. Converges for - l < x < 1. 
5. Converges for 0 < x < 2. 
7. Converges for all x. 
9. Converges for -4 < x < 4. 

11. R = w 
13. R = 2 
15. R = w 
17. R = 1, converges for x = 1 and - 1. 
19. R = 3 
21. R = 0 
23. Note that f(0) = 0 and f'(0) = I. 
25. (a) R = l 

(b) C z  '=,xi+' 
(c) f(x) = x(2 - x)/(l - x)' for 1x1 < 1 
(dl 3 

27. CT=o[(- l)'x2"/n!] 
29. tan- '(x) = C;=,[(- 1)"x2"+'/(2n + I)], and 

(dldx) (tan- 'x) = l)"x2". 
31. 112 + 3x14 + 7x2/8 + 15x3/16 + . . . 
33. x2 - x4/3 + 2x6/45 + . . . 
35. Set f(x) = 1/(1 - x) and g(x) = -x2/(1 - x). 
37. (a) x + (1/3)x3 + (2/15)x5 + . . . 

(b) 1 + x2 + (2/3)x4 + . . . 
(c) 1 - x2 + (1/3)x4 - . . . 

39. CT= ,(- l)'+'(l/i)xi 

41. Use the fact that 'J; + l as i + w. 

43. Write f(x) - f(xo) = 
i=O 
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45. Show that f(x) = C g ( t )  dt. 

11 2.5 Taylor's Formula 
1. 3x - 9x3/2 + 81x5/40 - 243x7/560 + . . . 
3. 2 - 2x + 3x2/2 - 4x3/3 + 17x4/24 - 4x5/15 + 

7x6/80 - 8x7/315 + . . . 
5. 1/3 - 2(x - 1)/3 + 5(x - 1 ) ~ / 9  + 0 .  (x - 
7. e + e(x - 1) + e(x - 1)2/2 + e(x - 1)~/6.  
9. (a) 1 - x2 + x6 + - . (b) 720 
11. Valid if - 1 < x < 1 (Integrate 1/(1 + x) = 

1 - x + x 2 - x 3 +  . . .  .) 
13. Let x - I = u and use the bionomial series. 
15. (a) 1 - (1/2)x2 + (3/8)x4 - (5/16)x6 + 

(35/128)x8 - . . . 
(b) (-1/2)(-1/2- I ) .  . . ( - l / 2 -  l o +  1). 

(20!)/(10!) 
17. fo(x) = f , (x)  = 1, f2(x) = f3(x) = 1 - x2/2,  

f4(x) = 1 - x2/2 + x4/24, 

19. = 0.095 
21. w 0.9 
23. = 0.401 
25. (a) The remainder is less than ~ ~ ~ ~ 1 1 2  where M3 

is the maximum value of I f"'(x)I on the inter- 
val [xo - R,xo + R]. 

(b) 0.9580. Simpsons rule gives 0.879. 
27. -4/3 
29. 1/6 
31. C:=o~n for 1x1 < 1 
33. C ~ = 0 2 ~ 2 n + '  for 1x1 < 1 
35. ~ ? = ~ x ~ ~  for 1x1 < 1 
37. 1 + 2x2 + x4 

39. Jxln t dt = Z:=2{(- l)'(x - l)i/[i(i - I)]). 

x lnx = (x - 1) + Cy=2{(- I)i(x - l)i/[i(i - I)]). 

Conclude Jxln t dt = x In x -x + 1. 

41. 1,0,1/2,0 
43. 0, - 1,0, - 1/2 
45. 1/2 - x2/4! + x4/6! - . . 
47. 1 - 2~ + 2 ~ 2  - 2 ~ 3  - 2x4 + 2x5 + . . . 
49. (a) (x - 1 )  - (x - 1)2/2 + (x - 1 ) ~ / 3  - 

(X - 1 ) ~ / 4  
(b) 1 + (x - e)/e - (x - e)2/2e2 + 

(x - e)3/3e3 - (x - e)4/4e4 
(c) ln2+  (x - 2)/2- (x - 2)2/8 + 

(x - 2)3/24 - (X - 2)4/64 
51. In 2 + x/2 + x2/8 - x4/192 + . . 

53. sin 1 + (cos 1)x + [(cos I - sin 1)/2]x2 - 
[(sin 1)/2]x3 + . . . 

55. (a) 0.5869768 
(b) It is within 1/1000 of sin 36". 
(c) 36" = a/5  radians, and she used the first two 

terms of the Taylor expansion. 
(d) Use the fact that 10" = n/18 radians and tan x % 

x(1 + x2/3) 
57. (a) 0, - 1 /3,0 

(b) 1 - x2/3! + x4/5! - x6/7! + - . . 
59. Follow the method of Example 3(d). 

12.6 Complex Numbers 
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59. Let z,  = a + ib, z2 = c + id and calculate 
1 ~ 1 ~ 2 1  and lzll . 1221. 

61. (8 + 3i)4 
63. 

67. 2 6  69. ex, y 
71. 1/2 + 6 i / 2  73. -ei 
75. ei 77. (3 - 4i)/25 
79. (a) e '" . e - iX = (cos x + i sin x)(cos x - i sin x); 

multiply out 
(b) Show ez  . e-' = 1 using (a). 

81. Show e3"'I2 = - i. 
83. Use (ei@)" = ei"@. 

85. 0 ei"I4 
87. (6 /5)e '(OA6) 

89. 
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99. z is rotated by a / 4  and its length multiplied by 

l /Q.  
101. Show that z4 = I and then that z2 = 1. 
103. Write eie = cos 0 + i sin 0. 

107. (z + 2i + 2)(z - 2) 
109. (a) tan i0 = i tanh 0 (b) tan i0 = (tanh 0)eir/2 
111. z,  = aiz,, a a real number 

113. (a) Factor z n  - 1 
(b) Use your factorization in (a). 
(c) - l,i ,  - i 

115. The motion of the moon with the sun at the origin. 
117. (a) (2n + 1)ni for any integer n. 

(b) You could define In(- 1) = ia, although there 
are other possibilities. 

12.7 Second-Order Liinear 
Differential Equations 

1. y  = clexp(3x) + c2exp(x) 
3. y  = cIexp(x/3) + c2exp(x) 
5. y  = f exp(3x) - f exp(x) 
7. y = e x  
9. y = cIexp[(2 + i)x] + c2exp[(2 - i)x] 

= exp(2x)[aIcosx + a2sinx] 
11. y = c,exp[(3 + 2i)x]+ c2exp[(3 - 2i)xl 

= exp(3x)[aIcos 2x + a2sin 2x1 
13. y  = x exp(3x) 
15. y  = (x - l)exp(-fl +Qx)  
17. (a) Underdamped 

(b) x = (l/a)(sin at)exp(- at/32), a = ?rm /32 
w a/2. 

19. (a) Critically damped 
(b) x = t exp(- at/6) 
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29. y = clexp(3x) + c2exp(x) + 2x + 6 
31. x = clexp(t/3) + c2exp(t) - sint/5 - 2cos t/5 
33. y = c ,exp(3x) + c2exp(x) + 

[exp(3x/2)]l(tan x)exp( - 3x) dx - 

[exp(x)/2]l(tan x)exp( - x) dx 

35. y = e2" (~ lcos2x  + C2sin2x) + 
[e2"cos 2x/2] {e2X[(1 - cot 2x)(cos 2x) - I 

(1 + cot 2x)(sin 2x)] . (1 + cos2x)) - ' dx + 
[e2'sin 2x/2] {e2" [(I - tan 2x) . (cos 2x) + I 
(1 + tan 2x)(sin 2x)](1 + cos2x)) - dx 

37. x = - cos 2t + cos t = 2 sin(3t/2)sin(t/2) 
39. x = (- 1/24)cos 5t + (1/5)sin 5t + (1/24)cos t 
41. (a) 

(b) Looks like ( 2 / m ) c o s ( 2 t  - tan-'(8/21)) 

43. (a) x(t) = exp(- t/2)[(7/lO)cos(@ t/2) + 
(- 1/2@) . sin(@ t/2)] + 
( l / m ) c o s ( t  - tan- '(1 /3)) 

(b) Looks like ( l / m ) c o s ( t  - tan-'(1/3)). 
45. Show that the Wronskian of y ,  and y2 does not 

vanish. 
47. (a) Subtract two solutions with the same initial 

conditions. 
(b) Show that they are zero when x = 0. 
(c) Solve algebraically for ~ ( x ) .  

49. (a) Compute the derivative of the Wronskian 
(b) If ( a  - f; 4P and r , ,  r2 are roots, then y 

= c,xrl + c2xrZ; if ( a  - = 4P and r is the 
root, then y = clxr  + ~ ~ x ( ' - " ) / ~ l n x .  (Assume 
x > 0 in each case). 

51. (a) Add all three forces 
(b) Substitute and differentiate. 

53. cle" c2eiA+ c3e-% c4e-" 
where X = (1 + i ) / n  or 

55. f ex  + f(x), where f(x) is the solution to Exercise 
53. 

12.8 Series Solutions of 
Differential Equations 

The recursion relation is 

or x1l6 [ blcos ( " ~ x ) + b 2 s i n ( ~ ) ]  - (no 

further terms). 
X k + 2  X k + 4  

15. (a) x k  + - + 
4k + 4 (4k + 4)(8k + 16) 

+ .  
X k + 2 j  + 4j(k + 1)(2k + 4) . . . ( jk  + j2) + .  

X - k + 2  
(b) x - ~  + 

- 4 k + 4  

17. Solve recursively for coefficients, then recognize 
the series for sine and cosine. 

19. (a) Use the ratio test 
(b) x,  - f + +x2, - + X  + $x3  

21. Show that the Wronskian is non-zero 
23. (a) Solve recursively 

(b) Substitute the given function in the equation. 
(To discover the solution, use the methods for 
solving first order linear equations given in Section 
8.6). 

Review Exercises for Chapter 12 
1. Converges to 1 /11. 
3. Converges to 45/2 5. Converges to 7/2 
7. Diverges 9. Converges 

11. Converges 13. Converges 
15. Diverges 17. Diverges 
19. Converges 21. Converges 
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23. Converges 
25. 0.78 
27. -0.12 
29. -0.24 
31. 0.25 
33. False 
35. False 
37. False 
39. False 
41. True 
43. True 
45. True 
47. Use the comparison test. 
49. 1/8 
51. 1 
53. R = w 
55. R = w 
57. R = 2 

22' 
59. f(x) = C ~ = o a n x n ,  where a,' = - 

a2i+1 = (2i + i ) !  

95. c, + e-"(c2cos x + c3sin x) 
97. m = 1 ,  k = 9 ,  y = 1 ,  F o = l ,  D = 2 ,  w = 3 ,  6 

= tanm'($). As t + w, the solution approaches 
& cos[2t - t a n  ' ( f ) ] .  

99. m = 1 ,  k = 2 5 ,  y = 6 ,  F -=1 ,  D = a ,  w = 5 ,  6 
= tanm'[6m/(25 - n2)]. As t+  w, the solution ap- 
proaches 

1 cos nt - tan- ' - 
J625 - 14n2 - n4 [ ( 2 5 y n 2  I] 

x4 ) + a l ( x - s +  . . .  

109. ( a ) m =  L, k =  1/C, y =  R 

(b) 0.01998e-19~90t - 0 . 0 2 0 2 0 e - ~ ~ ' ~ ~ ~ '  
+ 0.002099 sin(6Oxt) 
+ 0.0002227 cos(6Owt) 

111. Factor out x2. 
113. (a) The partial sums converge to y(x, t) for each 

(x, 0. 
(b) Z'?=0(- 1)kA2k+ 1 

115. = 0.659 178 
117. (a) w 1.12 

(b) , 2.24. It is accurate to within 0.02. 
119. - 1/2,1/6,0 
121. (a) m 3.68 

(b) + 

123. Show by induction that g(n)(x) is a polynomial 
times g(x). 

125. True 
127. (a) Collect terms 

(b) The radius of convergence is at most 1. 
(c) e 

129. Show that a < 1 / k  by using a Maclaurin series 
with remainder. 
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Abel, Nils Hendrik 172 
absolute value 22 

function 42, 72 
properties of 23 

absolutely convergent 574 
accelerating 160 
acceleration 102, 13 1 

gravitational 446 
Achilles and tortoise 568 
addition formulas, 259 
air resistance 136 
Airy's equation 640 
algebraic operations on power series 591 
algebraic rules 16 
alternating series test 573 
amplitude 372 
analytic 600 
angular 

frequency 373 
momentum 506 

annual percentage rate 382 
antiderivative 128 

of b" 323, 342 
of constant mutiple 130, 338 
of exponential 342 
of hyperbolic functions 389 
of inverse trigonometric function 341 
of I lx 323, 342 
of polynomial 130 
of power 130, 338 
rules 337, 338 
of sum 130, 338 
of trigonometric function 340 

of trigonometric functions 269 
Apostol, Tom M. 582 
applications of the integral, 240 
approaches 58 
approximation, first-order (see linear 

approximation) 
approximation, linear (see linear 

approximation) 
arc length 477 

in polar coordinates 500 
Archimedes 3,5,6 
area 4, 251 

between graphs 21 1, 241 
between intersecting graphs 242 
in polar coordinates 502 
of a sector 252 
signed 215 
of a surface 482 
of a surface of revolution 483 
under graph 208, 212, 229 
under graph of step function 210 

argument 40 
arithmetic mean 188 
arithmetic-geometric mean inequality 436 
astroid 198 
astronomy 9 
asymptote 165 

horizontal 165, 513, 535 
vertical 164, 518, 531 

asymptotic 164 
average 3 

power 464, 465 
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average (cont.) 
rate of change 100 
value 434 
velocity 50 
weighted 437 

axes 29 
axial symmetry 423 
axis of symmetry 440 

B-6 definition of limit 516 
ball 421 
Bascom, Willard 306(fn) 
base of logarithm 3 13 
beats 628 
Beckman, P. 251, fn 
Berkeley, Bishop George 6(fn) 
Bernoulli, J. 252(fn), 521 

equation 414 
numbers 643 

Bessel, F.W. 639 
equation 639 
functions 643 

binomial series 600 
bisection, method of 142, 145 
blows up 399 
bouncing ball 549 
bounded above 575 
Boyce, William 401 
Boyer, C. 7(fn), 252(fn) 
Braun, Martin 380, 401, 414, 426 
Burton, Robert 8 
bus, motion of 49, 202, 207, 225 

Calculator discussion 49, 1 12, 166, 255, 
257, 265, 277, 309, 327, 330, 541 

calculator symbol 29 
calculus 

differential 1 
fundamental theorem of 4, 225, 237 
integral 1,3 

Calculus Unlimited iii, 7(fn) 
capacitor equation 406 
carbon-14 383 
Cardano, Girolamo 172 
cardioid 298 
cartesian coordinates 255 
catastrophe 

cusp 176 
theory 176 

catenary 402 
Cauchy, Augustin-Louis 6, 521 

mean value theorem 526 
Cavalieri, Bonaventura 8, 425 
center of mass 437 

in the plane 439 
of region under graph 441 

of triangular region 445 
chain rule 1 12 

physical model 1 16 
change 

average rate of 100 
instantaneous rate of 10 
linear or proportional 100 
proportional 95 
rate of 2, 100, 101, 247 
of sign 146 
total 244 

chaos, in Newton's method 547 
characteristic equation 617 
chemical reaction rates 407 
circle 34, 44, 120, 251, 421 

equations of 37 
parametric equations of 490 

circuit, electric 413 
circular functions 385 
circumference 25 1 
city 

Fat 116 
Thin 115 

climate 180 
closed interval 21 

test 181 
College, George 383 
common sense 61, 193 
comparison test 570 

for improper integrals 530 
for limits 518 
for sequences 543 

completing the square 16, 17, 463 
complex number 607, 609 

argument of 61 1 
conjugate of 61 1 
imaginary part of 61 1 
length or absolute value of 61 1 
polar representation of 614 
properties of 6 12 
real part of 61 1 

composition of functions 1 12, 1 13 
derivative of 113 

concave 
downward 158 
upward 158 

concavity, second derivative test for 159 
conditionally convergent 574 
conoid 486 
conservation of energy 372 
consolidation principle 438 
constant function 41, 192 

derivative of 54 
rule for limits 62, 5 11 

constant multiple rule 
for antiderivatives 130 
for derivatives 77 
for limits 62 
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for series 566 
consumer's surplus 248 
continuity 63, 72 

of rational functions 140 
continuous 139 
continuous function 63 

integrability of 219 
continuously compounded interest 33 1, 

382, 416 
convergence, absolute 574 

conditional 574 
of series 562 
of Taylor series 597 
radius of 587 

convergent integral 529 
convex function 199 
cooling, Newton's law of 378 
coordinates 29 

cartesian 255 
polar 253, 255 

coriolis force 499 
cosecant 256 

inverse 285 
cosine 254 

derivative of 266 
hyperbolic 385 
inverse 283 
series for 600 

cosines, law of 258 
cost, marginal 106 
cotangent 256 

inverse 285 
Creese, T.M. 401 
critical points 151 
critically damped 621 
cubic function 168 

general, roots and graphing 172 
curve 31(fn) 

parametric 124, 298, 489 
cusp 170 

catastrophe 176 
cycloid 497 

dam 454 
damped force oscillations 628 
damping 377 

in simple harmonic motion 415 
Davis, Phillip 550 
day 

length of 30, 302 
shortening of 303 

decay 378 
decimal approximations 538 
declerating 160 
decrease, rate of 101 
decreasing function 146 
definite integral 232 

by substitution 355 
constant multiple rule for 339 
endpoint additivity rule for 339 
inequality rule 339 
power rule 339 
properties of 234, 339 
sum rule 339 
wrong-way 339 

degree 
as angular measure 252 
of polynomial and rational functions 97 

delicatessen, Cavalieri's 425 
delta 50(fn) 
demand curve 248 
Demoivre, Abraham 614 

formula 614 
density 440 

uniform 440 
depreciation 109 
derivative 3, 53, 70 

of b" 318 
of composition of functions 113 
of constant multiple 77 
of cosine 266 
formal definition of 70 
of hyperbolic functions 388 
of implicitly defined function 122 
of integer power 87 
of integral with respect to endpoint 236 
of integral whose endpoint is a given 

function 236 
of inverse hyperbolic functions 396 
of inverse function 278 
of inverse trigonometric functions 285 
Leibniz notation for 73 
as a limit 69 
of linear function 54 
logarithmic 117, 322, 329 
of logarithmic function 321 
of llx 71 
of polynomial 75, 79 
of power 75, 1 19 
of power of a function 110, 119 
of product 82 
of quadratic function 54 
of quotient 85 
of rational power 119 
of rational power of a function 119 
of reciprocal 85 
of sum 78 
second 99, 104, 157 
summary of rules 88 
of vx 71 

Dido 182 
difference quotient 53 
differentiable 70 
differential 

algebra 356 
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differential (cont.) 
calculus 1 
equation 369 

Airy's 369 
Bessel's 639 
first order 369 
harmonic oscillator 370 
Hermite's 636 
Legendre's 635 
linear first order 369 
numerical methods for 405 
of growth and decay 379 
of motion 369 
second order linear 617 
separable 398, 399 
series solutions 632 
solution of 39 
spring 370 
Tchebycheff's, 640 

differential notation 351, 359, 374, 398 
differentiation 3, 53, 122, 201 

implicit 120, 398 
logarithmic 117, 322, 329 
of power series 590 

diminishing returns, law of 106 
Diprima, Richard 390, 401 
direction field 403 
discriminant 17 
disk 421 

method 423 
displacement 230 
distance formula, in the plane 30 

on the line 23 
divergent integral 529 
domain 41 
double-angle formulas 259 
drag 136 

resistance 414 
dummy index, 203 

e, 319, 325 
as a limit, 330 

&-A definition of limit 5 13 
E-8 definition of limit 509 
ear popping 116 
earth's axis, inclination of 301 
economics 105 
electric circuit 399, 413 
element 21 
elliptic integral 417, 506, 507 
endpoints 18 1 

of integration 17 
energy 201, 445 

conservation of 372 
potential 446 

equation 
of circle and parabola 37 

differential (see also differential 
equation) 

parametric 124, 298 
simultaneous, 37 
spring 376 
of straight line 32 
of tangent line 90 

error function 558 
Eudoxus 4 
Euler, Leonhard 25 1 (fn), 252(fn), 369 

method 404 
equation 636 
formula 608 

evaluating 40 
even function 164, 175 
exhaustion method of 5, 7 
existence theorem 180, 219 
exponent, zero 23 
exponential 

function 307 
derivative of 320 
graphing problems 326 
limiting behavior 328 

growth 332 
series 600 
spiral 310, 333 

exponentiation 23 
exponents 

integer 23 
laws of 25 
negative 26 
rational 27, 1 18 
real, 308 

extended product rule for limits 62 
extended sum rule for limits 62, 69 

extensive quantity 445 
extreme value theorem 180 

factoring 16 
falling object 412, 414 
Feigenbaum, Mitchell J. 548 
Ferguson, Helaman 602 
Fermat, Pierre de 8 
Fine, H.B. 468 
first derivative test 153 
first-order aproximation (see linear 

approximation) 
flying saucer 430 
focusing property of parabolas 36, 95, 97 
football 453 
force 448 

on a dam 454 
forced oscillations 415, 626 
Fourier coefficients 506 
fractals 499 
fractional (see rational) 
frequency 259 
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friction 377 
Frobenius, George 636 
frustum 485 
function 1, 39 

absolute value 42, 72, 73 
average value of 434 
composition of 112, 113 
constant 41, 192 
continuous 63 
convex 199 
cubic 168 
definition of 41 
differentiation of 268 
even 164, 175 
exponential 307 
graph of 41, 44 
greatest integer 224 
hyperbolic 384, 385 
identity 40, 277, 384, 385 
inverse 272, 274 
inverse hyperbolic 392 
inverse trigonometric 28 1, 285 
linear 192 
odd 164, 175 
piecewise linear 480 
power 307 
rational 63 
squaring 41 
step 140, 209, 210 
trigonometric, antiderivative of 269 
trigonometric, graph of 260 
zero 41 

fundamental integration method 226 
set 630 

fundamental theorem of calculus 4, 225, 
237 

alternative version 236 

Galileo 8 
gamma function 643 
Gauss, Carl Friedrich 205, 615 
Gear, Charles W. 405 
Gelbaum, Bernard R. 576, 600 
general solution 618, 623 
geometric mean 188, 436 

series 564, 600 
global 141, 177 
Goldstein Lany 172 
Gould, S.H. 6(fn) 
graphing in polar coordinates 296 
graphing problems 

exponential and logarithmic 
functions 326 

trigonometric functions 292 
graphing procedure 163 
graphs 41, 163 

area between 241 

area under 2 12, 229 
of functions 41, 44 

gravitational acceleration 446 
greatest integer function 224 
growth 378 

and decay equation, solution 379 
exponential 332 

half-life 381, 383 
hanging cable 401 
Haralick, R.M. 401 
Hardin, Garrett 416 
harmonic series 567 
Herrnite polynomial 636 
Hermite's equation 636 
herring 156 
Hipparchus 256(fn) 
Hofstadter, Douglas 548 
Hijlder condition 559 
homogenous equation 623 
Hooke's Law 99, 295 
horizontal asymptote 165, 5 13, 535 
horizontal tangent 193 
horsepower 446 
horserace theorem 193 
hyperbolic cosine 385 
hyperbolic functions 384, 385 

derivatives 388 
antiderivatives 389 
inverse 392 

hyperbolic sine 385 
inverse 393 

I method 361 
identity function 40, 277 

rule for limits 60 
identity, trigonometric 257 
illumination 183 
imaginary axis 609 
imaginary numbers 18 
implicit differentiation 120, 122, 398 
improper integrals 528, 529 

comparison test for 530 
inclination of the earth's axis 301 
increase, rate of 101 
increasing function 146 

test 148 
theorem 195 
sequence property 575 

increasing on an interval 149 
indefinite integral (see antiderivative) 
indefinite integral test 233 
independent variable 40 
indeterminate form 521 
index 

dummy 203 
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1.6 Index 

index (cont.) 
substitution of 205 

indicia1 equation 638 
induction, principle of 69 
inequality 18 

arithmetic-geometric mean 188, 436 
Minkowski's 365 
properties of 19 

infinite limit 66 
infinite series 561 
infinite sum 561 
infinitesimals 73 

method of 6, 8 
infinity 21 
inflection point 159 

test for 160 
initial conditions 371, 398 
instantaneous quantity 445 
instantaneous velocity 50, 51 
integer power rule for derivatives 87 
integers 15 

sum of the first n 204 
Integrability of continuous function 219 
integrable 217 
integral 217 

calculated "by hand" 212 
calculus 1 
convergent 529 
definite 232 
definition of 217 
divergent 529 
elliptic 417 
of hyperbolic function 
indefinite 129 (see also antiderivative) 
improper 528, 529 
of inverse function 362 
Leibniz notation for 132 
mean value theorem 239 
mean value theorem 435 
of rational functions 469 
of rational expression in sin x and cos 

x 475 
Riemann 220 
sign 129, 132, 217 
tables 356 
trigonometric 457, 458 
of unbounded functions 53 1 
wrong way 235 

integrand 129 
integration 33, 129, 201 

applications of 420 
by parts 358 
by substitution 347, 348, 352 
endpoint of 217 
limit of 217 
method, fundamental 226 
methods of 337 
numerical 550 

of power series 590 
intensity of sunshine 45 1 
interest, compound 244, 33 1 
intermediate value theorem 141, 142 
intersecting graphs, area between 242 
intersection points 39 
interval 21 

closed 21 
open 19 

inverse 
cosecant 285 
cosine 283 
cotangent 285 
function 272, 274 

integral of 362 
rule 278 
test 276 

hyperbolic functions 392 
integrals 396 
derivatives 396 

hyperbolic sine 393 
secant 285 
sine 281 
tangent 283 
trigonometric functions 281, 285 

invertibility, test for 275, 276 
irrational numbers 16 
ith term test 567 

joule 445 

Kadanoff, Leo 548 
Keisler, H. Jerome 7(fn), 73(fn) 
Kelvin, Lord 594 
Kendrew, W.G. 180 
Kepler, Johannes 8 

second law 506 
Kilowatt-hour 446 
kinetic energy 446 
Kline, Morris 182 

I'Hbpital, Guillaume 521 
rule 522, 523, 525 

labor 106 
ladder 190 
Lagrange's interpolation polynomial 556 
Laguerre functions 640 
Lambert, Johann Heinrich 25 l(fn) 
latitude 300 
law of mass action 476 
law of reflection 290 
Legendre, Adrien Marie 25 1 (fn) 

equation 635 
polynomial 635 

Leibniz, Gottfried 3, 73, 193(fn), 594 
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Index 1.7 

notation 73, 104, 132, 217 
for derivative 73 
for integral 132 

lemniscate 136 
length 

of curves 477 
of days 300, 302 
of parametric curve 495 

librations 506 
limagon 298 
limit 6, 57, 59 

at infinity 65, 512 
comparison test 5 1 8 
of (cos x - 1)lx 265 
derivative as a 69 
derived properties of 62 
e-6 definition of 509 
of function 509 
infinite 66 
of integration 217 
method 6 
one-sided 65, 517 
of powers 542 
product rule 5 1 1 
properties of 60, 5 1 1 
reciprocal rule 5 1 1 
of sequence 537, 540 

properties 563 
of (sin x)lx 265 

line 31(fn) 
equation of 32 
perpendicular 33 
point-point form 32 
point-slope form 32 
real number 18 
secant 51, 191 
slope of 52 
slope-intercept form 32 
straight 3 l(fn), 125 
tangent 2, 191 

linear approximation 90, 91, 92, 158, 159, 
60 1 

linear function 192 
derivative of 54 

linear or proportional change 100 
linearized oscillations 375 
Lipshitz condition 559 
Lissaious figure 507 
local" 141, 1.51, 177 

maximum point 15 1, 157 
minimum point 151, 157 

logarithm 313 
base of 3 13 
defined as integral 326 
function, derivative of 321 
laws of 314 
limiting behavior 328 
natural 319 

properties of 314 
series for 600 
word problems for 326 

logarithmic differentiation 117, 322, 329 
logarithmic spiral 534, 535 
logistic equation 506 
logistic law 407 
logistic model for population 335 
Lotka-Voltera model 400 
love bugs 535 
lower sum 210 
Lucan 8(fn) 

Maclaurin, Colin 594 
polynomial for sin x 602 
series 594, 596 

MACSYMA 465 
majorize 199 
Mandelbrot, Benoit 499 
marginal 

cost, 106 
productivity 106 
profit 106 
revenue 106 

Marsden, Jerrold 582, 615 
Matsuoka, Y. 582 
maxima and minima, tests for 

181 
maximum 

global 177 
point 151 
value 177 

maximum-minimum problems 
mean value theorem 191 

Cauchy's 526 
consequences of 192 
for integrals 239, 435, 455 

Meech, L.W. 9 
midnight sun 301(fn) 
minimum 

points 177 
value 177 

Minkowski's inequality 365 
mixing problem 413, 414 
modulates 628 
motion, simple harmonic 373 

with damping 415 

natural 
growth or decay 380 
logarithms 319 
numbers 15 

Newton, Isaac, 3(fn), 8(fn), 193(fn), 
253(fn), 594 

iteration 559 
law of cooling 378 
method 537, 546 
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1.8 Index 

Newton, Isaac (cont.) 
accuracy of 559 
and chaos 547 

second law of motion 369 
nonhomogenous equation 623 
noon 301(fn) 
northern hemisphere 301 
notation 

differential 351, 359, 374, 398 
Leibniz 73, 104, 132, 217 
summation 203, 204 

nowhere differentiable continuous 
function 578 

number 
complex 607, 609 
imaginary 18 
irrational 16 
natural 15 
rational 15 
real 15, 16 

numerical integration 550 

odd function 164, 175 
Olmsted, John M. H. 578, 600 
one-sided limit 65, 517 
open interval 21 
optical focusing property of parabolas 36, 

95, 97 
order 18 
orientation quizzes 13 
origin 29 
orthogonal trajectories 402 
oscillations 294, 369 

damped forced 628 
forced 415 
harmonic 373 
linearized 375 
overdamped 62 1 
underdamped 621 

oscillator, forced 626 
oscillatory part 629 
Osgood, W. 521 
overdamped case 621 

pH 317 
Pappus' theorem 454 
parabola 34 

equations of 37 
focusing property of 36, 95, 97 
vertex of 55 

parameter 489 
parametric curve 124, 287, 489 

length of 495 
tangent line to 491, 492 

parametric equations 
of circle 490 
of line 490 

partial fractions 465, 469, 591 
partial integration (see integration by parts) 
particular solution 37 1, 623 
partition 209 
parts, integration by 358, 359 
pendulum 376, 391, 417 
period 259 
periodic 259 
perpendicular lines 33 
Perverse, Arthur 367 
pharaohs 416 
phase shift 372, 629 
Picard's method 559 
plotting 29, 43, 163 
point 

critical 151 
infiection 159 
intersection 39 
local maximum 15 1, 157 
local minimum 15 1, 157 

point-point form 32 
polar coordinates 253, 255 

arc length in 500 
area in 502 
graphing in 296 
tangents in 299 

polar representation of complex 
numbers 61 1 

Polya, George 182 
polynomial 

antiderivative of 130 
derivative of 75, 79 

pond, 74 
population 117, 175, 189, 195, 335, 344, 

382, 400, 407, 416 
position 131 
Poston, Tim 176 
potential energy 446 
power 445 

function 307 
integer 23 
negative 26 
of function rule for derivatives 1 10 
rational 18, 27, 169 
real 308 
rule 

for antiderivatives 130 
for derivatives 76, 119 
for limits, 62 

series 586 
algebraic operations on 591 
differentiation and integration of 590 
root test 589 

predator-prey equations 400 
producer's surplus 248 
product rule 

for derivatives 82 
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product rule (cont.) 
for limits 60 

E-8 proof 520 
productivity 

of labor 106 
marginal 106 

profit 329 
marginal 106 

program 40 
projectile 295 
proportional change 95 
Ptolemy 256(fn) 
pursuit curve 499 
Pythagoras, theorem of 30 

quadratic 
formula 16, 17 
function 

derivative of 54 
general, graphing of 176 

quizzes, orientation 13 
quotient 

derivative of 85 
difference 53 
rule, for limits 62 

radian 252 
radius 34 

of convergence 587 
rate of change 2, 101, 247 

decrease 101 
increase 101 
relative 329 

rates, related 124 
ratio comparison test for series 571 
ratio test 

for power series 587 
for series 582 

rational 
exponents 1 18 
expressions 475 
function, continuity of 63, 140 
numbers 15 
power rule, for derivatives of a 

function 119 
powers 118, 119 

rationalizing 28 
substitution 474 

real axis 609 
real 

exponents 308 
number line 18 
numbers 15, 16 
powers 308 

reciprocal rule 
for derivatives 86 

for limits 60 
test for infinite limit 517 

recursively 541 
reduction formula 365 
reduction of order 619 
reflection, law of 290 
region between graphs 240 
related rates 124 

word problems 125 
relative rate of change 329 
relativity 80(fn) 
repeated roots 620 
replacement rule, for limits 60 
resisting medium 412 
resonance 415, 626, 629 
revenue, marginal 106 
revolution, surface of 482 
Riccati equation 414 
Richter scale 317 
Riemann, Bernhard 220, fn 

integral 220 
sums 220, 221, 551 

Rivlin's equation 199 
Robinson, Abraham 7, 73(fn) 
rocket propulsion 412 
Rodrigues' formula 640 
Rolle, Michel 193(fn) 

theorem 193 
root splitting 619 
root test 

for power series 589 
for series 584 

rose 297 
Ruelle, David 548 
Ruffini, Paolo 172 

Saari, Donald G. 548 
scaling rule, for integral 350 
Schelin, Charles W. 257 (fn) 
school year 303 
secant, 256 

inverse 285 
line 52, 191 

second derivative 99, 104, 157 
test for maxima and minima 157 
test for concavity, 159 

second-order approximation 601 
second-order linear differential 

equations 617 
sector, area of 252 
separable differential equations 398, 399 
sequence 537 

comparison test 543 
limit of 537, 540 
properties 563 

series 
alternating 572 
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1.10 Index 

series (cont.) 
comparison test for 570 
constant multiple rule for 566 
convergence of 562 
divergent 562 
geometric 564 
harmonic 567 
infinite 561 
integral test 580 
p 581 
power (see power series) 
ratio comparison test for 571 
ratio test for 582 
root test for 584 
solutions 632 
sum of 562 
sum rule for 566 

set 21 
shell method 429 
shifting rule 

for derivatives 115 
for integral 350 

sigma 203 
sign, change of 146 
signed area 215 
similar triangles 254 
Simmons, George F. 401 
simple harmonic motion 373 

damped 415 
Simpson's rule 554 
simultaneous equations 37 
sine 254 

derivative of 266 
hyperbolic 385 
inverse 281 
series 600 

sines, law of 263 
slice method 420 
slope 2, 31 

of tangent line 52 
slope-intercept form 32 
Smith, D.E. 193(fn) 
Snell's law 305 
solar energy 8, 107, 179, 180, 221, 
solids of revolution 423, 429 
Spearman-Brown formula 520 
speed 103, 497 
speedometer 95 
sphere 421 

bands on 483 
spiral 

exponential 310, 333 
logarithmic 534, 535 

Spivak, Mike 25 l(fn) 
spring 

constant 370 
equation 370, 376 

square, completing the 16, 17, 463 

square root function, continuity of 64 
squaring function 41 
stable equilibrium 376 
standard deviation 453 
steady-state current 520 
step function 5, 140, 209, 210 

area under graph 210 
straight line 31(fn), 125 (see also line) 
stretching rule, for derivatives 117 
strict local minimum 15 1 
Stuart, Ian 176 
substitution 

definite integral by 355 
integration by 347, 348, 352 
of index 205 
rationalizing 474 
trigonometric 461 

sum rule 
E-8 proof 520 
for derivatives 78 
for limits 60 
physical model for 80 

sum 203 
collapsing 206 
infinite 561 
lower 210 
of the first n integers 204 
Riemann 220, 221, 551 
rule for antiderivatives 130 
telescoping 206 
upper 210 

summation 
notation 201, 203, 204 
properties of 204, 208 

sun 300 
sunshine intensity 45 1 
superposition 37 1 
supply curve 248 
surface of revolution 482 

area of 483 
suspension bridge 407 
symmetries 163, 296 
SY mmetry 

449 axis of 440 
principle 440 

tables of integrals 356, endpapers 
Tacoma bridge disaster 626 
tangent 

hyperbolic 386 
inverse 284 
line 2, 191, 491 

horizontal 193 
slope of 52 
to parametric curve 492 
vertical 169 

tangent function 256 
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Index 1.11 

Tartaglia, Niccolo 172 
Taylor series 594 

test 59 
convergence of 597 

Taylor, Brook 594 
Tchebycheff's equation 640 
telescoping sum 206 
terminal speed 412 
third derivative test 160 
Thompson, D' Arcy 423 
time 

of day 301 
of year 301 

torus 431 
total change 244 
tractrix 499 
train 55, 80, 291 
transcontinental railroad 569 
transient 41 1, 628 
transitional spiral 643 
trapezoidal rule 552 
triangles, similar 254 
trigonometric functions 

antiderivatives of 269 
derivatives of 264, 268 
graphing problems 282 
inverse 281, 285 
word problems 289 

trigonometric identity 257 
trigonometric integrals 457, 458 
trigonometric substitution 461 
trisecting angles 172 

unbounded region 528 
underdamped oscillations 621 
undetermined coefficients 623 
unicellular organisms 423 
uniform density 440 
uniform growth or decay 381 
unstable equilibrium 376, 390, 406 
upper sum 210 
Urenko, John B. 548 

value 
absolute (see absolute value) 
maximum 177 
minimum 177 

variable 
changing 354 

independent 40 
variance 453 
variation of constants (or parameters) 378, 

624 
velocity 102, 131, 230 

average 50 
field 404 
instantaneous 50, 51 
positive 149 

vertex 55 
vertical asymptote 164, 518, 531 
vertical tangent 169 
Viete, Fran~ois 25 1 (fn) 
Volterra, Vito 401 
volume 

of bologna 426 
disk method for 423 
shell method for 429 
slice method for 419 
of a solid region 419 
washer method for 424 

washer method 424 
water 178, 247 

flowing 131, 144, 343 
in tank 126 

watt 446 
wavelength 263 
waves, water 306 
Weber-Fechner law 33 
Weierstrass, Karl 6 ,  578 
weighted average 437 
window seat 291 
word problems 

integration 247 
logarithmic and exponential 

functions 326 
maximum-minimum 177 
related rates 125 
trigonometric functions 289 

wrong-way integrals 235 
Wronskians 630 

yogurt 279 

zero 
exponent 23 
function 41 
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A Brief Table of Integrals, continued. 

1 coshx + 1 29. l c s c h  x dx = In tanh - = - - In I ;I 2 c o s h x - 1  

I 1 1 31. cosh2xdx=-s inh2x+-x  
4 2 

32. sech2x dx = tanh x I 

35. / t m h - '  5 dx = x t a n h '  X a + q n l a 2  2 - x21 

J" 3a4 . - I  
39. (a2  - x ~ ) ~ / ~ ~ x  = X (5a2 - 2x2)J= + - sin 

8 8 a (a  > 0 )  

40. 
a ( a  > 0 )  

1 a + x  I dx=-lnl--l 41. - I - x 2  2a a - x  

i i  8 
a4 

52. x2  a2 - x2  dx = 5 (2x2 - a 2 ) J Z T 7  + - sin-' 
8 a 

Continued on overleaf. 
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A Brief Table of Integrals, continued. 

- - tan-' 2ax + b (b2  < 4ac) 
J Z F P  J&FF 

64. 1 d x = - l n l a x 2 + b x + c l - -  1 dx 
ax2+ bx + c 2a 

65. / 1 I dx = - 1nl2ax + b + 2J;;JaxZ + bx + c I ( a  > 0 )  
{ax2 + bx + c J;; 

- 1 - 2 a x - b  -- ( a  < 0 )  
6 JFG 

4ac - b2 2ax+ Jax2+ bx + c + - 66. JJax2  + bx + c dx = - 
1 dx 

4a 

- -- I sin-' bx + 2c 
( c  < 0 )  

\I- l x l d F 7 G  

Continued on inside back cover. 
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ief Table of Integrals, continued. 

S 
cos(a - b ) x  cos(a + b ) x  

72. sin ax cos bx dx = - - 
2(a - b )  2(a + b )  

(a2 i. b2) 

S 
sin(a - b ) x  sin(a + b ) x  

73. cos ax  cos bx dx = + 
2(a - b )  2(a + b )  

(a2  f b2) 

74. sec x tan x dx = sec x S 
75. J c scxco t xdx  = c s c x  

76. cosmx sinnx dx = S costn - I X  sinn * ' x  + m - 1 cosm - 2x dx 
m + n  m + n  

- - - sinn - Ix cos"' + ' x  n - 1 j cosmx - 2x dx 
m + n  m + n  

S 1 77. xns inaxdx= - - x n c o s a x + -  xn- 'cosaxdx  
a a 

1 
J 

S a a " S x n ' s i n a x d x  
78. xncos ax  dx = - xnsin ax  - - 

S 
e "" ( a  sin bx - b cos bx )  

82. eaxsin bx dx = 
a2 + b2 

eax(bsinbx + acosbx)  
83. Jeaxcosbxdx = 

a2 + b2 

84. sech x tanh x dx'= - sech x S 
85. Scsch x coth x dx = - csch x 

Greek Alphabet 

alpha 
beta 
gamma 
delta 
epsilon 
zeta 
eta 
theta 

iota 
kappa 
lambda 
mu  
nu 
xi 
omicron 
pi 

rho 
sigma 
tau 
upsilon 
phi 
chi 
psi 
omega 
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