Limites e Continuidade

Maria Joana Torres

2021/22

Definição de limite

Definição:

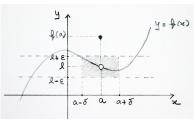
Seja $f:X\longrightarrow \mathbb{R}$ uma função e $a\in X'$ um ponto de acumulação de X.

Diz-se que o número real ℓ é o limite de f(x) quando x tende para a, e escreve-se

$$\lim_{x \to a} f(x) = \ell,$$

quando, para todo $\epsilon>0$ dado arbitrariamente, pode-se obter $\delta>0$ tal que se tem $|f(x)-\ell|<\epsilon$ sempre que $x\in X$ e $0<|x-a|<\delta$. Simbolicamente:

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in X \qquad 0 < |x - a| < \delta \Longrightarrow |f(x) - \ell| < \epsilon.$$



Propriedades do limite

Teorema [Unicidade do limite]:

Sejam
$$f:X\longrightarrow \mathbb{R}$$
 e $a\in X'$. Se $\lim_{x\to a}f(x)=\ell_1$ e $\lim_{x\to a}f(x)=\ell_2$ então $\ell_1=\ell_2$.

Teorema:

Sejam
$$f,g:X\longrightarrow \mathbb{R}$$
 e $a\in X'.$ Se $\lim_{x\to a}f(x)=0$ e g é limitada em $X\backslash\{a\}$ então

$$\lim_{x \to a} f(x)g(x) = 0.$$

Propriedades do limite

Teorema do enquadramento]:

Sejam $f,g,h:X \longrightarrow \mathbb{R}$ e $a \in X'$ tais que

$$f(x) \leq g(x) \leq h(x), \quad \forall x \in X \backslash \{a\}.$$

Se
$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = \ell$$
 então também $\lim_{x \to a} g(x) = \ell$.

Propriedades do limite

Teorema [Aritmética de limites]:

Sejam $f,g:X\longrightarrow\mathbb{R}$ e $a\in X'.$ Suponhamos que existem $\ell=\lim_{x\to a}f(x)$ e $m=\lim_{x\to a}g(x).$ Então

- (a) $\lim_{x \to a} (f+g)(x) = \ell + m;$
- (b) $\lim_{x \to a} (f g)(x) = \ell m;$
- (c) $\lim_{x \to a} (fg)(x) = \ell m;$
- $(d) \ \lim_{x\to a} \frac{f}{g}\left(x\right) = \frac{\ell}{m}, \quad \text{ sempre que } m\neq 0.$

Limites laterais

Definição:

Seja $f:X\longrightarrow \mathbb{R}$ uma função e $a\in X'_+$ um ponto de acumulação à direita do conjunto X.

Diz-se que o número real ℓ é o **limite à direita de** f(x) **quando** x **tende para** a (por valores superiores a a), e escreve-se

$$\lim_{x\to a^+} f(x) = \ell,$$

quando, para todo $\epsilon>0$ dado arbitrariamente, pode-se obter $\delta>0$ tal que se tem $|f(x)-\ell|<\epsilon$ sempre que $x\in X$ e $0< x-a<\delta$.

Simbolicamente:

$$\forall \epsilon > 0 \ \exists \delta > 0$$
 $x \in]a, a + \delta[\cap X \Longrightarrow |f(x) - \ell| < \epsilon.$

Limites laterais

Definição:

Seja $f:X\longrightarrow \mathbb{R}$ uma função e $a\in X'_-$ um ponto de acumulação à esquerda do conjunto X.

Diz-se que o número real ℓ é o limite à esquerda de f(x) quando x tende para a (por valores inferiores a a), e escreve-se

$$\lim_{x\to a^-} f(x) = \ell,$$

quando, para todo $\epsilon>0$ dado arbitrariamente, pode-se obter $\delta>0$ tal que se tem $|f(x)-\ell|<\epsilon$ sempre que $x\in X$ e $-\delta< x-a<0$.

Simbolicamente:

$$\forall \epsilon > 0 \ \exists \delta > 0 \qquad x \in]a - \delta, a[\cap X \Longrightarrow |f(x) - \ell| < \epsilon.$$

Limites laterais

Teorema:

Sejam $f:X\longrightarrow \mathbb{R}$ uma função e $a\in X'_+\cap X'_-$. Então existe $\ell=\lim_{x\to a}f(x)$ se e só se existem e são iguais a ℓ os limites laterais, isto é,

$$\lim_{x \to a} f(x) = \ell \Longleftrightarrow \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = \ell.$$

Limites no infinito

Definição:

Seja $X\subseteq\mathbb{R}$ um conjunto não majorado. Dada $f:X\longrightarrow\mathbb{R}$, diz-se que o limite de f quando x tende para $+\infty$ é ℓ e escreve-se

$$\lim_{x\to +\infty} f(x) = \ell,$$

quando o número real ℓ satisfaz à seguinte condição:

$$\forall \epsilon > 0 \; \exists N \in \mathbb{R} \; \forall x \in X \qquad x > N \Longrightarrow |f(x) - \ell| < \epsilon.$$

Ou seja, dado arbitrariamente $\epsilon>0$, existe $N\in\mathbb{R}$ tal que $|f(x)-\ell|<\epsilon$ sempre que x>N.

Definição:

Seja $X\subseteq\mathbb{R}$ um conjunto não minorado. Dada $f:X\longrightarrow\mathbb{R}$, diz-se que o limite de f quando x tende para $-\infty$ é ℓ e escreve-se

$$\lim_{x\to -\infty} f(x) = \ell,$$

quando o número real ℓ satisfaz à seguinte condição:

$$\forall \epsilon > 0 \ \exists N \in \mathbb{R} \ \forall x \in X \qquad x < N \Longrightarrow |f(x) - \ell| < \epsilon.$$

Definição:

Sejam $f: X \longrightarrow \mathbb{R}$ uma função e $a \in X'$. Diz-se que:

• o limite de f quando x tende para $a \in +\infty$ se

$$\forall M \in \mathbb{R} \ \exists \ \delta > 0 \ \forall \ x \in X \setminus \{a\} \qquad |x - a| < \delta \Longrightarrow f(x) > M$$

e escreve-se
$$\lim_{x \to a} f(x) = +\infty$$
;

ullet o limite de f quando x tende para $a \in -\infty$ se

$$\forall \, M \in \mathbb{R} \, \exists \, \delta > 0 \, \, \forall \, x \in X \setminus \{a\} \qquad |x - a| < \delta \Longrightarrow f(x) < M$$

e escreve-se
$$\lim_{x \to a} f(x) = -\infty$$
.

Limites infinitos no infinito

Definição:

Seja $f:X\longrightarrow \mathbb{R}$ uma função. Se X é um conjunto não majorado, diz-se que o limite de f quando x tende para $+\infty$ é $+\infty$ e escreve-se

$$\lim_{x \to +\infty} f(x) = +\infty$$
 se

$$\forall\,M\in\mathbb{R}\,\,\exists\,N\in\mathbb{R}\,\,\forall\,x\in\,X\qquad x>N\Longrightarrow f(x)>M.$$

Deixa-se ao cuidado do leitor a definição de limite de f quando x tende para $+\infty$ é $-\infty$, escrevendo-se $\lim_{x\to +\infty} f(x) = -\infty$.

Definição:

Seja $f:X\longrightarrow \mathbb{R}$ uma função. Se X é um conjunto não minorado, diz-se que o limite de f quando x tende para $-\infty$ é $+\infty$ e escreve-se

$$\lim_{x \to -\infty} f(x) = +\infty$$
 se

$$\forall M \in \mathbb{R} \ \exists N \in \mathbb{R} \ \forall x \in X \qquad x < N \Longrightarrow f(x) > M.$$

Deixa-se ao cuidado do leitor a definição de limite de f quando x tende para $-\infty$ é $-\infty$, escrevendo-se $\lim_{x\to\infty} f(x) = -\infty$.

Definição de função contínua

Definição:

Uma função $f:X\longrightarrow \mathbb{R}$ diz-se contínua no ponto $a\in X$ quando

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in X \qquad |x - a| < \delta \Longrightarrow |f(x) - f(a)| < \epsilon.$$

Chama-se **descontínua no ponto** $a\in X$ uma função $f:X\longrightarrow \mathbb{R}$ que não é contínua nesse ponto.

Diz-se que $f:X\longrightarrow \mathbb{R}$ é uma função contínua quando f é contínua em todos os pontos $a\in X.$

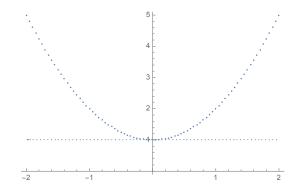
Continuidade

Proposição:

Sejam $f:X\longrightarrow \mathbb{R}$ uma função e $a\in X$. A função f é contínua em a se e só se ocorre uma das situações seguintes:

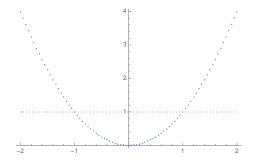
- 1. a é ponto isolado de X
- 2. a é ponto de acumulação de X e $\lim_{x\to a} f(x) = f(a)$.

Há funções definidas em $\mathbb R$ contínuas apenas num ponto



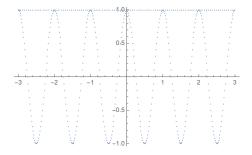
Há funções definidas em $\ensuremath{\mathbb{R}}$ contínuas em exatamente dois pontos

$$\begin{array}{cccc} f: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \left\{ \begin{array}{ll} x^2 & \text{ se } x \in \mathbb{Q} \\ 1 & \text{ se } x \in \mathbb{R} \setminus \mathbb{Q} \end{array} \right. \end{array}$$



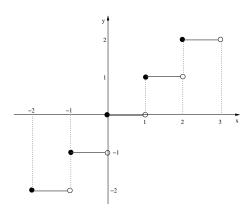
Função contínua apenas nos pontos de $\ensuremath{\mathbb{Z}}$

$$\begin{array}{ccccc} f: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \left\{ \begin{array}{ll} \cos(2\pi x) & \text{se } x \in \mathbb{Q} \\ 1 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q} \end{array} \right. \end{array}$$

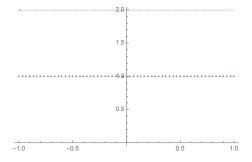


Função descontínua apenas nos pontos de $\ensuremath{\mathbb{Z}}$

$$\begin{array}{cccc} [\,\cdot\,] : & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & [x] \end{array}$$



Há funções definidas em $\ensuremath{\mathbb{R}}$ descontínuas em todos os pontos



Aritmética de funções contínuas

<u>Teorema</u> [Aritmética de funções contínuas]:

Dadas $f,\,g\,:X\longrightarrow\mathbb{R}$ funções contínuas em $a\in X$,

- 1. f+g e fg são funções contínuas em a;
- $2. \ \ {\rm se} \ g(a) \neq 0 \ {\rm ent} \tilde{a} {\rm o} \ \frac{f}{g} \ {\rm \acute{e}} \ {\rm cont} {\rm \acute{n}} {\rm ua} \ {\rm em} \ a.$

Continuidade da função composta

Teorema [Continuidade da função composta]:

Sejam $f:X\longrightarrow Y$ uma função contínua em $a\in X$, $g:Y\longrightarrow \mathbb{R}$ uma função contínua em f(a). Então $g\circ f$ é contínua em a.

(A composta de funções contínuas é contínua).

Continuidade da restrição

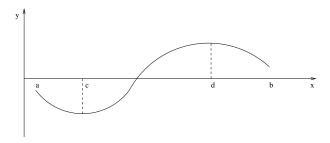
<u>Teorema</u> [Continuidade da restrição]:

Sejam $f:X\longrightarrow \mathbb{R}$ uma função contínua e A um subconjunto não vazio de X. Então $f_{|_A}$ é contínua.

Teorema [de Weierstrass]:

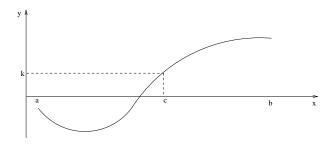
Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua. Então

$$\exists\, c,\, d\in [a,b] \,\,\forall\, x\in [a,b] \qquad f(c)\leq f(x)\leq f(d).$$



Teorema [de Bolzano-Cauchy ou do valor intermédio]:

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua tal que $f(a)\neq f(b)$. Se k é um número real estritamente compreendido entre f(a) e f(b), então existe $c\in]a,b[$ tal que f(c)=k.



Corolário:

Seja $f:[a,b]\longrightarrow\mathbb{R}$ uma função contínua e suponhamos que f(a)f(b)<0. Então existe $c\in]a,b[$ tal que f(c)=0.

Corolário:

Sejam I um intervalo de $\mathbb R$ e $f:I\longrightarrow \mathbb R$ uma função contínua. Então f(I) é um intervalo.

<u>Teorema</u> [Continuidade da função inversa]:

Sejam I e J intervalos de $\mathbb R$ e $f:I\longrightarrow J$ uma função bijetiva e contínua. Então f^{-1} é contínua.