

Formulário 1 - Séries de números reais

Série geométrica

Seja $r\in\mathbb{R}$. À série numérica $\sum_{n=1}^{+\infty}r^{n-1}=1+r+r^2+r^3+\cdots$ chama-se série geométrica de razão r.

• A sua sucessão das somas parciais é definida por

$$s_n = \left\{ \begin{array}{rl} n & \text{se } r = 1, \\ \\ \frac{1 - r^n}{1 - r} & \text{se } r \neq 1. \end{array} \right.$$

• Esta série diverge se $|r| \ge 1$ e converge se |r| < 1, caso em que a sua soma é $s = \frac{1}{1-r}$.

Série de Riemann

Seja $\alpha \in \mathbb{R}^+$. À série numérica $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$ chama-se série de Riemann de expoente α .

- Esta série diverge se $\alpha \le 1$ e converge se $\alpha > 1$.
- No caso particular em que $\alpha=1$, a série de Riemann recebe a designação de série harmónica (divergente, portanto).

Série de Mengoli (ou telescópica)

Sejam $(a_n)_{n\in\mathbb{N}}$ uma sucessão de números reais e $p\in\mathbb{N}$. À série numérica $\sum_{n=1}^{+\infty}(a_n-a_{n+p})$ chama-se série de Mengoli ou telescópica.

• A sua sucessão das somas parciais é definida por

$$s_n = a_1 + a_2 + \dots + a_p - (a_{n+1} + a_{n+2} + \dots + a_{n+p}), n \in \mathbb{N}.$$

• Esta série converge se e só se $(a_n)_{n\in\mathbb{N}}$ é uma sucessão convergente. Em caso de convergência, a sua soma é $s=a_1+a_2+\cdots+a_p-p\lim_n a_n$.

Primeiro Critério de Comparação

Sejam $\sum_{n=0}^{+\infty} u_n$ e $\sum_{n=0}^{+\infty} v_n$ séries de termos não negativos tais que, a partir de certa ordem, $u_n \leq v_n$.

a) Se
$$\sum_{n=1}^{+\infty} v_n$$
 converge então $\sum_{n=1}^{+\infty} u_n$ converge. b) Se $\sum_{n=1}^{+\infty} u_n$ diverge então $\sum_{n=1}^{+\infty} v_n$ diverge.

b) Se
$$\sum_{n=1}^{+\infty} u_n$$
 diverge então $\sum_{n=1}^{+\infty} v_n$ diverge.

Segundo Critério de Comparação

Sejam $\sum_{n=1}^{+\infty}u_n$ e $\sum_{n=1}^{+\infty}v_n$ séries de termos posistivos tais que $\ell=\lim_n\frac{u_n}{v_n}$, sendo $\ell\in[0,+\infty]$.

a) Se
$$\ell\in\mathbb{R}^+$$
 então as séries $\sum_{n=1}^{+\infty}u_n$ e $\sum_{n=1}^{+\infty}v_n$ têm a mesma natureza.

b) Se
$$\ell=0$$

i) se
$$\sum_{n=1}^{+\infty} v_n$$
 converge então $\sum_{n=1}^{+\infty} u_n$ converge. ii) se $\sum_{n=1}^{+\infty} u_n$ diverge então $\sum_{n=1}^{+\infty} v_n$ diverge.

c) Se
$$\ell = +\infty$$

i) se
$$\sum_{n=0}^{+\infty} v_n$$
 diverge então $\sum_{n=0}^{+\infty} u_n$ diverge

i) se
$$\sum_{n=1}^{+\infty} v_n$$
 diverge então $\sum_{n=1}^{+\infty} u_n$ diverge.
 ii) se $\sum_{n=1}^{+\infty} u_n$ converge então $\sum_{n=1}^{+\infty} v_n$ converge.

Critério da razão (de D'Alembert)

Seja $\sum_{n=0}^{+\infty} u_n$ uma série de termos positivos e $\ell = \lim_{n \to \infty} \frac{u_{n+1}}{u_n}$.

a) Se
$$\ell < 1$$
 então $\displaystyle \sum_{n=1}^{+\infty} u_n$ converge.

b) Se
$$\ell > 1$$
 então $\sum_{n=1}^{+\infty} u_n$ diverge.

c) Se
$$\ell=1$$
 então nada se pode concluir sobre a natureza de $\sum_{n=1}^{+\infty}u_n.$

Critério da raíz (de Cauchy)

Seja $\sum_{n=1}^{\infty} u_n$ uma série de termos não negativos e $\ell = \lim_n \sqrt[n]{u_n}$.

a) Se
$$\ell < 1$$
 então $\displaystyle \sum_{n=1}^{+\infty} u_n$ converge.

b) Se
$$\ell > 1$$
 então $\sum_{n=1}^{+\infty} u_n$ diverge.

c) Se
$$\ell=1$$
 então nada se pode concluir sobre a natureza de $\displaystyle\sum_{n=1}^{+\infty}u_n.$

Critério de Leibnitz

Seja
$$(a_n)_n$$
 uma sucessão decrescente tal que $\lim_n a_n = 0$. Então $\sum_{n=1}^{+\infty} (-1)^n a_n$ é convergente.

2